RSS-Feed abonnieren
DOI: 10.3413/Nukmed-0201
Kinetic analysis of experimental rabbit tumour and inflammation model with 18F-FDG PET/CT
Kinetische Analysen eines experimentellen Kaninchen-Tumor- und Entzündungsmodells mit 18F-FDG PET/CTPublikationsverlauf
received:
26. Juli 2008
accepted in revised form:
20. Februar 2009
Publikationsdatum:
22. Januar 2018 (online)
Summary
Non-specific accumulation of 18F-FDG by both tumour and inflammatory lesions can make diagnostic analysis difficult. Our aim was to explore the difference in 18F-FDG uptake kinetics between tumour and inflammatory cells. To this end, we investigated VX2 tumour lesions and inflammatory lesions in rabbits. Methods: Six rabbits with VX2 tumour cells transplanted into one forelimb muscle and inflammatory lesions induced by turpentine oil in the contralateral forelimb were scanned for 60 minutes post 18F-FDG injection. Imaging data was analyzed with the standard 2-tissue-compartment model. Parameters, VB, Ki, K1, k2, k3, k4, were compared between tumour and inflammatory lesions. SUV and dual time scan methods were also compared in the experiment. Results: Time activity curves of VX2 tumour lesions showed a characteristic pattern of gradually increasing 18F-FDG uptake up to 60 min, whereas, 18F-FDG uptake in inflammatory lesions increased more slowly than in tumours. Parameters estimated from the uptake process showed that forward transport constant, K1, and influx constant, Ki, values in VX2 tumour lesions (0.186 ± 0.053 and 0.048 ± 0.014, respectively) was significantly higher than that in inflammatory lesions (0.129 ± 0.024 and 0.022 ± 0.007, respectively) (p < 0.05). In contrast, mean values of VB, k2, k3 and k4 derived from VX2 tumours were not significantly different from that of inflammatory lesions. SUVs at 60 minutes post 18F-FDG injection were also significantly higher in the VX2 tumor lesions than in the inflammatory lesions. Retention index (RI) was not significantly different between VX2 tumours and inflammatory lesions (1.134 ± 0.076 vs. 1.060 ± 0.058, p > 0.05). Conclusion: Different kinetic parameters (Ki, K1, k3) exist between inflammatory and tumour lesions.
Zusammenfassung
Die unspezifische Anreicherung von 18F-FDG in Tumoren und auch in entzündlichen Läsionen kann die Diagnostik erschweren. Ziel dieser Arbeit war es, Unterschiede in der Kinetik des 18F-FDG-Uptake zwischen Tumorund Entzündungszellen zu erforschen. Hierzu wurden VX2-Tumore und entzündliche Läsionen bei Kaninchen untersucht. Tiere, Methoden: Sechs Kaninchen, bei denen VX2-Tumorzellen in einen Muskel eines Vorderlaufes transplantiert und im kontralateralen Vorderlauf mittels Terpentinöl entzündliche Läsionen induziert wurden, wurden über 60 Minuten nach einer 18F-FDG-Injektion gescannt. Die Bilddaten wurden mittels standardisierten 2-Gewebe-Kompartment- Modells analysiert. Die Para - meter VB, Ki, K1, k2, k3, k4 wurden zwischen Tumor und entzündlicher Läsion verglichen. SUV und zweizeitige Scanmethoden wurden in dem Experiment ebenfalls verglichen. Ergebnisse: Die Zeit/Aktivitätskurven von VX2-Tumoren zeigten ein charakteristisches Muster mit schrittweise zunehmendem 18F-FDG-Uptake über bis zu 60 min, während der 18F-FDG-Uptake in entzündlichen Läsionen langsamer zunahm als in Tumoren. Die aus dem Aufnahmeprozess geschätzten Para meter zeigten, dass die Werte der Vorwärts transportkonstante K1 und der Einstromkonstanten Ki in Tumorgewebe (0,186 ± 0,053 bzw. 0,048 ± 0,014) signifikant höher waren als in entzündlichem Gewebe (0,129 ± 0,024 bzw. 0,022 ± 0,007) (p < 0,05). Dagegen unterschieden sich die Mittelwerte für VB, k2, k3 und k4, die aus VX2-Tumoren abgeleitet wurden, nicht signifikant von denen aus entzündlichen Läsionen. 60 Minuten nach 18F-FDGInjektion waren die SUVs in VX2-Tumoren ebenfalls signifikant höher als in den entzündlichen Läsionen. Der Retentionsindex (RI) war bei VX2-Tumoren und entzündlichen Läsionen nicht signifikant unterschiedlich (1,134 ± 0,076 vs. 1,060 ± 0,058, p > 0,05). Schlussfolgerung: Kinetische Parameter (Ki, K1, k3) zeigen Unterschiede bei entzündlichen Läsionen und Tumoren.
-
References
- 1 Alkhawaldeh K, Bural G, Kumar R. et al. Impact of dual-time-point 18F-FDG PET imaging and partial volume correction in the assessment of solitary pulmonary nodules. Eur J Nucl Med Mol Imaging 2008; 35: 246-252.
- 2 Bakheet SM, Powe J. Benign causes of 18FDG uptake on whole body imaging. Semin Nucl Med 1998; 28: 352-358.
- 3 Boerner AR, Weckesser M, Herzog H. et al. Optimal scan time for fluorine-18 fluorodeoxyglucose positron emission tomography in breast cancer. Eur J Nucl Med 1999; 26: 226-230.
- 4 Brown RS, Goodman TM, Zasadny KR. et al. Expression of hexokinase II and Glut-1 in untreated human breast cancer. Nucl Med Biol 2002; 29: 443-453.
- 5 Burger C, Buck A. Requirements and implementation of a flexible kinetic modeling tool. J Nucl Med 1997; 38: 1818-1823.
- 6 Gupta NC, Frank AR, Dewan NA. et al. Solitary pulmonary nodules: detection of malignancy with PET with 2-[18F]-fluoro-2-deoxy-D-glucose. Radiology 1992; 184: 441-444.
- 7 Higashi K, Ueda Y, Sakurai A. et al. Correlation of Glut-1 glucose transporter expression with. Eur J Nucl Med 2000; 27: 1778-1785.
- 8 Huang SC, Phelps ME, Hoffman EJ. et al. Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 1980; 238: E69-82.
- 9 Huang SC. Anatomy of SUV. Standardized uptake value. Nucl Med Biol 2000; 27: 643-646.
- 10 Hustinx R, Smith RJ, Benard F. et al. Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: a potential method to differentiate malignancy from inflammation and normal tissue in the head and neck. Eur J Nucl Med 1999; 26: 1345-1348.
- 11 Imdahl A, Nitzsche E, Krautmann F. et al. Evaluation of positron emission tomography with 2-[18F]flu- oro-2-deoxy-D-glucose for the differentiation of chronic pancreatitis and pancreatic cancer. Br J Surg 1999; 86: 194-199.
- 12 Kondo S, Hosono MN, Wada Y. et al. Use of FDG- microPET for detection of small nodules in a rabbit model of pulmonary metastatic cancer. Ann Nucl Med 2004; 18: 51-57.
- 13 Kubota K, Itoh M, Ozaki K. et al. Advantage of delayed whole-body FDG-PET imaging for tumour detection. Eur J Nucl Med 2001; 28: 696-703.
- 14 Kumar R, Loving VA, Chauhan A. et al. Potential of dual-time-point imaging to improve breast cancer diagnosis with 18F-FDG PET. J Nucl Med 2005; 46: 1819-1824.
- 15 Lodge MA, Lucas JD, Marsden PK. et al. A PET study of 18FDG uptake in soft tissue masses. Eur J Nucl Med 1999; 26: 22-30.
- 16 Lowe VJ, Fletcher JW, Gobar L. et al. Prospective investigation of positron emission tomography in lung nodules. J Clin Oncol 1998; 16: 1075-1084.
- 17 Matthies A, Hickeson M, Cuchiara A. et al. Dual time point 18F-FDG PET for the evaluation of pulmonary nodules. J Nucl Med 2002; 43: 871-875.
- 18 Mavi A, Urhan M, Yu JQ. et al. Dual time point 18F-FDG PET imaging detects breast cancer with high sensitivity and correlates well with histologic subtypes. J Nucl Med 2006; 47: 1440-1446.
- 19 Mochizuki T, Tsukamoto E, Kuge Y. et al. FDG uptake and glucose transporter subtype expressions in experimental tumor and inflammation models. J Nucl Med 2001; 42: 1551-1555.
- 20 Oya N, Nagata Y, Ishigaki T. et al. Evaluation of experimental liver tumors using fluorine-18-2-flu- oro-2-deoxy-D-glucose PET. J Nucl Med 1993; 34: 2124-2129.
- 21 Oya N, Nagata Y, Tamaki N. et al. FDG-PET evaluation of therapeutic effects on VX2 liver tumor. J Nucl Med 1996; 37: 296-302.
- 22 Patz Jr EF, Lowe VJ, Hoffman JM. et al. Focal pulmonary abnormalities: evaluation with 18F fluorodeoxyglucose PET scanning. Radiology 1993; 188: 487-490.
- 23 Phelps ME, Huang SC, Hoffman EJ. et al. Tomo- graphic measurement of local cerebral glucose metabolic rate in humans with (18F)2-fluoro- 2-deoxy-D-glucose: validation of method. Ann Neurol 1979; 6: 371-388.
- 24 Shankar LK, Hoffman JM, Bacharach S. et al. Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute Trials. J Nucl Med 2006; 47: 1059-1066.
- 25 Shreve PD, Anzai Y, Wahl RL. Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics 1999; 19: 61-77.
- 26 Sokoloff L, Reivich M, Kennedy C. et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 1977; 28: 897-916.
- 27 Strauss LG. Fluorine-18 deoxyglucose and false- positive results: a major problem in the diagnostics of oncological patients. Eur J Nucl Med 1996; 23: 1409-1415.
- 28 Thakur ML, DeFulvio J, Park CH. et al. Technetium-99m-labeled proteins for imaging inflammatory foci. Int J Rad Appl Instrum B 1991; 18: 605-612.
- 29 Thie JA. Optimizing dual-time and serial positron emission tomography and single photon emission computed tomography scans for diagnoses and therapy monitoring. Mol Imaging Biol 2007; 9: 348-356.
- 30 Tseng J, Dunnwald LK, Schubert EK. et al. 18F-FDG kinetics in locally advanced breast cancer: correlation with tumor blood flow and changes in response to neoadjuvant chemotherapy. J Nucl Med 2004; 45: 1829-1837.
- 31 Westerterp M, Sloof GW, Hoekstra OS. et al. 18FDG uptake in oesophageal adenocarcinoma: linking biology and outcome. J Cancer Res Clin Oncol 2008; 134: 227-236.
- 32 Yamada S, Kubota K, Kubota R. et al. High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue. J Nucl Med 1995; 36: 1301-1306.
- 33 Zhao S, Kuge Y, Tsukamoto E. et al. Effects of insulin and glucose loading on FDG uptake in experimental malignant tumours and inflammatory lesions. Eur J Nucl Med 2001; 28: 730-735.
- 34 Zhuang H, Pourdehnad M, Lambright ES, Yamamoto AJ, Lanuti M, Li P. et al. Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med 2001; 42: 1412-1417.