Nuklearmedizin 2012; 51(05): 170-178
DOI: 10.3413/Nukmed-0506-12-05
Original article
Schattauer GmbH

Sodium-iodide symporter positive cells after intracellular uptake of 99mTc versus α-emitter 211At

Reduction of clonogenic survival and characterization of DNA damageNatrium-Iodid-Symporter-positive Zellen nach intrazellulärer Aufnahme von 99mTc im Vergleich zum α-Emitter 211AtReduktion des klonogenen Überlebens und Charakterisierung von DNA-Schäden
J. Kotzerke
1   Department of Nuclear Medicine, University Hospital, Carl Gustav Carus, Technische Universität Dresden, Germany
,
M. Wendisch
1   Department of Nuclear Medicine, University Hospital, Carl Gustav Carus, Technische Universität Dresden, Germany
,
R. Freudenberg
1   Department of Nuclear Medicine, University Hospital, Carl Gustav Carus, Technische Universität Dresden, Germany
,
R. Runge
1   Department of Nuclear Medicine, University Hospital, Carl Gustav Carus, Technische Universität Dresden, Germany
,
L. Oehme
1   Department of Nuclear Medicine, University Hospital, Carl Gustav Carus, Technische Universität Dresden, Germany
,
G.J. Meyer
2   Department of Nuclear Medicine, Centre for Radiology, Hannover Medical School, Hannover, Germany
,
L. A. Kunz-Schughart
3   OncoRay – National Center for Radiation Research in Oncology, Carl Gustav Carus, Technische Universität Dresden, Germany
,
G. Wunderlich
1   Department of Nuclear Medicine, University Hospital, Carl Gustav Carus, Technische Universität Dresden, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received: 31. Mai 2012

accepted in revised form: 30. August 2012

Publikationsdatum:
02. Januar 2018 (online)

Summary

Purpose: We evaluated the DNA damaging potential of Auger electrons emitted in the decay of 99mTc compared to α-particles of 211At. Material and methods: The impact of 99mTc and 211At was monitored in a NIS-expressing rat thyroid cell model PC Cl3 with varying, yet defined intra- and extracellular radionuclide distribution (using ± perchlorate). The radiotoxicity of 99mTc and 211At was studied by the comet assay under neutral and alkaline conditions and colony formation. Results: In the presence of perchlorate, the radioactivity yielding 37 % cellular survival, A37, was estimated to be (0.27 ± 0.02) MBq/ml and (450 ± 30) MBq/ml for 211At and 99mTc, respectively. In absence of perchlorate, cellular radiotracer uptake was similar for both radionuclides (2.2 %, 2.7 %), yet the A37 was reduced by 82% for the α-emitter and by 95 % for 99mTc. Cellular dose increased by a factor of 5 (211At) and 38 (99mTc). Comet assays revealed an increased DNA damage after intracellular uptake of both radiotracers. Conclusions: The data indicate damage to the cell to occur from absorbed dose without recognizable contribution from intracellular heterogeneity of radionuclide distribution. Comet assay under alkaline and neutral conditions did not reveal any shift to more complex DNA damage after radionuclide uptake. Cellular uptake of 99mTc and 211At increased cellular dose and reduced clonogenic survival.

Zusammenfassung

Ziel: Untersucht wurden der Auger-Elektronen- Emitter 99mTc im Vergleich mit dem α-Emitter 211At hinsichtlich des Potentials zur DNA-Schädigung. Material und Methode: An NIS-positiven PC Cl3-Zellen wurde die Wirkung von 99mTc und 211At bei variabler intra- und extrazellulärer Radionuklidverteilung (An- und Abwesenheit von Perchlorat) überprüft. Die Radiotoxizität beider Nuklide wurde mittels alkalischen und neutralen Komet-Assay sowie Koloniebildungsassay bestimmt. Ergebnisse: In Anwesenheit von Perchlorat betrug die Aktivität A37, welche zu 37%igem Zellüberleben führt, (0,27 ± 0,02) MBq/ml für 211At und (450 ± 30) MBq/ ml für 99mTc. Bei Abwesenheit von Perchlorat wurde ein vergleichbarer Uptake für beide Nuklide beobachtet (2,2 % bzw. 2,7 %), wobei A37 für den α-Emitter um 82 % sank und um 95 % für 99mTc. Dabei erhöhte sich die Zelldosis um den Faktor 5 (211At) bzw. 38 (99mTc). Für beide Radiotracer wurde ein Anstieg der DNA-Schädigung mittels Komet-Assay beobachtet. Schlussfolgerung: Die Daten weisen auf eine Zellschädigung infolge der absorbierten Dosis hin ohne erkennbaren Einfluss von heterogenen, intrazellulären Radionuklidverteilungen. Nach intrazellulärer Aufnahme wurde mittels alkalischen und neutralen Komet-Assay keine Zunahme der Komplexität von DNA-Schäden beobachtet. Die Aufnahme von 99mTc und 211At führt zur Dosissteigerung und der Reduktion des klonogenen Zellüberlebens.

 
  • References

  • 1 Agostinelli S, Allison J, Amako K. et al. GEANT4-a simulation toolkit. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 2003; 506: 250-303.
  • 2 Allison J, Amako K, Apostolakis J. et al. Geant4 developments and applications. IEEE Transactions on Nuclear Science 2006; 53: 270-278.
  • 3 Balagurumoorthy P, Chen K, Adelstein SJ. et al. Auger electron-induced double-strand breaks depend on DNA topology. Radiat Res 2008; 170: 70-82.
  • 4 Bloomer WD, Adelstein SJ. 5-125I-iododeoxyuridine as prototype for radionuclide therapy with Auger emitters. Nature 1977; 265: 620-621.
  • 5 Calini V, Urani C, Camatini M. Comet assay evaluation of DNA single- and double-strand breaks induction and repair in C3H10T1/2 cells. Cell Biol Toxicol 2002; 18: 369-379.
  • 6 Carlin S, Akabani G, Zalutsky MR. In vitro cytotoxicity of 211At-astatide and 131I-iodide to glioma tumor cells expressing the sodium/iodide symporter. J Nucl Med 2003; 44: 1827-1838.
  • 7 Carlin S, Mairs RJ, Welsh P. et al. Sodium-iodide symporter (NIS)-mediated accumulation of [211At]astatide in NIS-transfected human cancer cells. Nucl Med Biol 2002; 29: 729-739.
  • 8 Chan PC, Lisco E, Lisco H. et al. The radiotoxicity of iodine-125 in mammalian cells II. A comparative study on cell survival and cytogenetic responses to 125IUdR, 131TUdR, and 3HTdR. Radiat Res 1976; 67: 332-343.
  • 9 Claesson AK, Stenerlow B, Jacobsson L. et al. Relative biological effectiveness of the alpha-particle emitter 211At for double-strand break induction in human fibroblasts. Radiat Res 2007; 167: 312-318.
  • 10 Elgqvist J, Bernhardt P, Hultborn R. et al. Myelotoxicity and RBE of 211At-conjugated monoclonal antibodies compared with 99mTc-conjugated monoclonal antibodies and 60Co irradiation in nude mice. J Nucl Med 2005; 46: 464-471.
  • 11 Feinendegen LE. Biological damage from the Auger effect, possible benefits. Radiat Environ Biophys 1975; 12: 85-99.
  • 12 Freudenberg R, Andreeff M, Oehme L. et al. Dosimetry of cell-monolayers in multiwell plates. Nuklearmedizin 2009; 48: 120-126.
  • 13 Freudenberg R, Wendisch M, Kotzerke J. Geant4-Simulations for cellular dosimetry in nuclear medicine. Z Med Phys 2011; 21: 281-289.
  • 14 Goddu SM, Howell RW, Bouchet LG. et al. MIRD Cellular S Values. Reston: Society of Nuclear Medicine. 1997
  • 15 Haberkorn U, Altmann A, Jiang S. et al. Iodide uptake in human anaplastic thyroid carcinoma cells after transfer of the human thyroid peroxidase gene. Eur J Nucl Med 2001; 28: 633-638.
  • 16 Haberkorn U, Kinscherf R, Kissel M. et al. Enhanced iodide transport after transfer of the human sodium iodide symporter gene is associated with lack of retention and low absorbed dose. Gene Ther 2003; 10: 774-780.
  • 17 Haefliger P, Agorastos N, Renard A. et al. Cell uptake and radiotoxicity studies of an nuclear localization signal peptide-intercalator conjugate labeled with [99mTc(CO)3]+. Bioconjug Chem 2005; 16: 582-587.
  • 18 Haefliger P, Agorastos N, Spingler B. et al. Induction of DNA-double-strand breaks by auger electrons from 99mTc complexes with DNA-binding ligands. Chembiochem 2005; 6: 414-421.
  • 19 Helmekea HJ, Mahnke E, Schaardt U. et al. External targets for the production of 211At - review and status of the target development at the Hannover cyclotron. Z Med Phys 2004; 14: 195-199.
  • 20 Howell RW. Radiation spectra for Auger-electron emitting radionuclides: report No. 2 of AAPM Nuclear Medicine Task Group No. 6. Med Phys 1992; 19: 1371-1383.
  • 21 Howell RW. Auger processes in the 21st century. Int J Radiat Biol 2008; 84: 959-975.
  • 22 Humm JL, Howell RW, Rao DV. Dosimetry of Auger-electron-emitting radionuclides: report no. 3 of AAPM Nuclear Medicine Task Group No. 6. Med Phys 1994; 21: 1901-1915.
  • 23 Kassis AI. Therapeutic radionuclides: biophysical and radiobiologic principles. Semin Nucl Med 2008; 38: 358-366.
  • 24 Kassis AI, Adelstein SJ. A rapid and reproducible method for the separation of cells from radioactive media. J Nucl Med 1980; 21: 88-90.
  • 25 Kassis AI, Harris CR, Adelstein SJ. et al. The in vitro radiobiology of astatine-211 decay. Radiat Res 1986; 105: 27-36.
  • 26 Kobe C, Weber I, Eschner W. et al. Graves' disease and radioiodine therapy. Is success of ablation dependent on the choice of thyreostatic medication?. Nuklearmedizin 2008; 47: 153-156.
  • 27 Leoni SG, Galante PA, Ricarte-Filho JC. et al. Differential gene expression analysis of iodide-treated rat thyroid follicular cell line PCCl3. Genomics 2008; 91: 356-366.
  • 28 Lewis DM. 99Mo supply - the times they are changing. Eur J Nucl Med Mol Imaging 2009; 36: 1371-1374.
  • 29 Lindencrona U, Forssell-Aronsson E, Nilsson M. Transport of free 211At and 125I- in thyroid epithelial cells: effects of anion channel blocker 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid on apical efflux and cellular retention. Nucl Med Biol 2007; 34: 523-530.
  • 30 Meignan M, Charpentier B, Wirquin E. et al. Biological effects and irradiation dose induced in human lymphocytes in vitro by an intracellular radionuclide: 99mTc. Radiat Res 1983; 94: 263-279.
  • 31 Meller B, Deisting W, Wenzel BE. et al. Increased radioiodine uptake of thyroid cell cultures after external irradiation. Strahlenther Onkol 2006; 182: 30-36.
  • 32 Muller WU, Ciborovius J, Bauch T. et al. Analysis of the action of the restriction endonuclease aluI using three different comet assay protocols. Strahlenther Onkol 2004; 180: 655-664.
  • 33 Neti PV, Howell RW. Log normal distribution of cellular uptake of radioactivity: implications for biologic responses to radiopharmaceuticals. J Nucl Med 2006; 47: 1049-1058.
  • 34 Olive PL. The comet assay. An overview of techniques. Methods Mol Biol 2002; 203: 179-194.
  • 35 Pedraza-Lopez M, Ferro-Flores G, Mendiola-Cruz MT. et al. Assessment of radiation-induced DNA damage caused by the incorporation of 99mTc-radiopharmaceuticals in murine lymphocytes using single cell gel electrophoresis. Mutat Res 2000; 465: 139-144.
  • 36 Petrich T, Helmeke HJ, Meyer GJ. et al. Establishment of radioactive astatine and iodine uptake in cancer cell lines expressing the human sodium/iodide symporter. Eur J Nucl Med Mol Imaging 2002; 29: 842-854.
  • 37 Pomplun E, Sutmann G. Is coulomb explosion a damaging mechanism for 125IUdR?. Int J Radiat Biol 2004; 80: 855-860.
  • 38 Pouget JP, Santoro L, Raymond L. et al. Cell membrane is a more sensitive target than cytoplasm to dense ionization produced by auger electrons. Radiat Res 2008; 170: 192-200.
  • 39 Runge R, Wendisch M, Wunderlich G. et al. DNA damage in lymphocytes after irradiation with 211At and 188Re. Nuklearmedizin 2009; 48: 221-226.
  • 40 Schipper ML, Riese CG, Seitz S. et al. Efficacy of 99mTc pertechnetate and 131I radioisotope therapy in sodium/iodide symporter (NIS)-expressing neuroendocrine tumors in vivo. Eur J Nucl Med Mol Imaging 2007; 34: 638-650.
  • 41 Siegel JA, Stabin MG. Absorbed fractions for electrons and beta particles in spheres of various sizes. J Nucl Med 1994; 35: 152-156.
  • 42 Silva CR, Valsa JO, Caldeira-de-araujo A. et al. Evaluation of the cytotoxic and mutagenic potentiality of technetium-99m in Escherichi coli. Cell Mol Biol (Noisy-le-grand) 2002; 48: 783-787.
  • 43 Singh NP, Stephens RE, Schneider EL. Modifications of alkaline microgel electrophoresis for sensitive detection of DNA damage. Int J Radiat Biol 1994; 66: 23-28.
  • 44 Smit BS, Slabbert JP, Reinecke SA. et al. Comparison of cell inactivation by Auger electrons using the two reagents 4-[123I]iodoantipyrine and [123I]NaI. Radiat Environ Biophys 2001; 40: 47-52.
  • 45 Speit G, Hartmann A. The comet assay: a sensitive genotoxicity test for the detection of DNA damage. Methods Mol Biol 2005; 291: 85-95.
  • 46 Stabin MG, Brill AB. State of the art in nuclear medicine dose assessment. Semin Nucl Med 2008; 38: 308-320.
  • 47 Stinchcomb TG, Roeske JC. Values of „S,“ <z1>, and <(z1)2> for dosimetry using alpha-particle emitters. Med Phys 1999; 26: 1960-1971.
  • 48 Terrissol M, Peudon A, Kummerle E. et al. On the biological efficiency of I-123 and I-125 decay on the molecular level. Int J Radiat Biol 2008; 84: 1063-1068.
  • 49 Van Sande J, Massart C, Beauwens R. et al. Anion selectivity by the sodium iodide symporter. Endocrinology 2003; 144: 247-252.
  • 50 Vitor RF, Esteves T, Marques F. et al. 99mTc-tricarbonyl complexes functionalized with anthracenyl fragments: synthesis, characterization, and evaluation of their radiotoxic effects in murine melanoma cells. Cancer Biother Radiopharm 2009; 24: 551-563.
  • 51 Wendisch M, Drechsel J, Freudenberg R. et al. Cellular damage in vitro. Nuklearmedizin 2009; 48: 208-214.
  • 52 Wendisch M, Freudenberg R, Drechsel J. et al. 99mTc reduces clonogenic survival after intracellular uptake in NIS-positive cells in vitro more than 131I. Nuklearmedizin 2010; 49: 154-160.