Nuklearmedizin 2013; 52(01): 21-27
DOI: 10.3413/Nukmed-0514-12-07
Original article
Schattauer GmbH

Quantitative pretreatment VOI analysis of liver metastases

99mTc-MAA SPECT/CT and FDG PET/CT in relation with treatment response to SIRTPrätherapeutische quantitative VOI-Analyse von LebermetastasenKorrelation zwischen 99mTc-MAA SPECT/CT und FDG PET/CT und Ansprechen auf eine Behandlung mit SIRT
C. Van de Wiele
1   Department of Nuclear Medicine, University Hospital Ghent, Belgium
,
K. Stellamans
2   Department of Radiotherapy, AZ Groeninge, Kortrijk, Belgium
,
E. Brugman
3   Department of Radiology, AZ Groeninge, Kortrijk, Belgium
,
G. Mees
1   Department of Nuclear Medicine, University Hospital Ghent, Belgium
,
B. De Spiegeleer
4   Department of Analytical Chemistry, University Ghent, Belgium
,
Y. D’Asseler
1   Department of Nuclear Medicine, University Hospital Ghent, Belgium
,
L. Beels
2   Department of Radiotherapy, AZ Groeninge, Kortrijk, Belgium
,
A. Maes
5   Department of Nuclear Medicine, AZ Groeninge, Kortrijk, Belgium
6   Department of Morphology and Medical Imaging, University Hospital Leuven, Belgium
› Author Affiliations
Further Information

Publication History

received: 04 July 2012

accepted in revised form: 27 January 2012

Publication Date:
04 January 2018 (online)

Summary

Using quantitive VOI analysis, the percentage 99mTc-MAA uptake and SUVmax and mean values of liver metastases obtained prior to SIRT were related to treatment response using both a lesion-based and clinical dichotomous approach. Based on the VOI % of 99mTc-MAA activity, the estimated 90Y-microspheres activity/cc (MBq/cc) was calculated from the effective dose injected. Baseline VOI FDG PET SUVmean and max values and estimated MBq/cc values were related to treatment response using a lesionbased approach (% change in SUVmean ≥ 50%) and a clinical dichotomous approach. Fifteen treatment sessions were analyzed (13 patients). Using the lesion-based approach (12 treatment sessions) 40 lesions responded and 37 did not. SUVmax and mean values proved significantly different between non-responding and responding lesions; 18.6 (SD 10.8) versus 13.5 (SD 8.4 ) for SUVmax (p = 0.02) and 11.4 (SD 3.8) versus 6.3 (SD 4.5) for SUVmean (p = 0.002). Using the clinical dichotomous approach (15 treatment sessions / 11 responding), 91 lesions were analyzed; 57 responded. VOI volumes and estimated 90Y-loaded glass microspheres activity (MBq/cc) did not differ between responders and non responders; 24 cc (SD 27) versus 21 cc (SD 21 cc) (p = 0.4) and 1.95 MBq/cc (SD 1.1 MBq/cc) versus 1.90 MB/cc (SD 2.7 MBq/cc) (p = 0.92). On the contrary, SUVmax and mean values proved significantly different between responders and nonresponders; 23.7 (SD 9.8) versus 9.4 (SD 3.8 ) for SUVmax (p = 0.0001) and 13.1 (SD 8.1) versus 4.9 (SD 1.4) for SUVmean. Conclusion: These findings suggest that in patients presenting with high baseline SUVmax and mean values, the administration of higher activities or alternatively, other potentially more useful treatment options might be considered.

Zusammenfassung

Mittels quantitativer VOI-Analyse wurden die prozentuale 99mTc-MAA Aufnahme, SUVmax und die vor einer SIRT ermittelten Mittelwerte von Lebermetastasen mit dem Ansprechen auf die Behandlung in Beziehung gesetzt, wobei sowohl ein läsionsbasierter als auch ein klinischer dichotomer Ansatz gewählt wurden. Basierend auf den VOI % der 99mTc-MAA Aktivität wurde die geschätzte Aktivität/cm3 der 90Y-Mikrosphären (MBq/cm3) aus der injizierten effektiven Dosis berechnet. Die mittleren und maximalen VOI FDG PET SUV-Werte bei Baseline und die geschätzten MBq/cm3-Werte wurden anhand eines läsionsbasierten (% Veränderung bei SUVmean ≥50%) sowie eines klinisch-dichotomen Ansatzes mit dem therapeutischen Ansprechen korreliert. Es wurden 15 Behandlungssitzungen (13 Patienten) analysiert. Mit dem läsionsbasierten Ansatz (12 Behandlungen) sprachen 40 Läsionen an und 37 nicht. Die mittleren und maximalen SUV-Werte waren zwischen den nicht ansprechenden und den ansprechenden Läsionen signifikant unterschiedlich; 18,6 (SD 10,8) versus 13,5 (SD 8,4) für SUVmax (p = 0,02) und 11,4 (SD 3,8) versus 6,3 (SD 4,5) für SUVmean (p = 0,002). Anhand des klinisch-dichotomen Ansatzes (15 Behandlungen / 11 erfolgreich) wurden 91 Läsionen analysiert; 57 sprachen an. Die VOI-Volumina und die geschätzte Aktivität der 90Y markierten Glas-Mikrosphären (MBq/cm3) unterschieden sich nicht zwischen Respondern und Non-Respondern; 24 cm3 (SD 27) versus 21 cm3 (SD 21 cm3) (p = 0,4) und 1.95 MBq/ cm3 (SD 1,1 MBq/cm3) versus 1,90 MB/cm3 (SD 2,7 MBq/cm3) (p = 0,92). Hingegen wichen die maximalen und die mittleren SUV-Werte der Responder signifikant von denen der Non-Responder ab; 23,7 (SD 9,8) versus 9,4 (SD 3,8) für SUVmax (p = 0,0001) und 13,1 (SD 8,1) versus 4,9 (SD 1,4) für SUVmean. Schlussfolgerung: Diese Ergebnisse lassen vermuten, dass bei Patienten mit hohen mittleren und maximalen SUV-Ausgangswerten die Gabe höherer Aktivitäten oder, alternativ, andere, potenziell wirksamere Behandlungsmöglichkeiten in Betracht gezogen werden sollten.

 
  • References

  • 1 Allal AS, Slosman DO, Kebdani T. et al. Prediction of outcome in head-and-neck cancer patients using the standardized uptake value of 2-[18F]flu-oro-2-deoxy-D-glucose. Int J Radiat Biol Oncol Biol Phys 2004; 5: 1295-1300.
  • 2 Aronen HJ, Pardo FS, Kennedy DN. et al. High microvascular blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas. Clin Cancer Res 2000; 6: 2189-2200.
  • 3 Dhabuwala A, Lamerton P, Stubbs RS. Relationship of 99m-technetium labelled macroaggregated albumin (99mTc-MAA) uptake by colorectal liver metastases to response following selective internal radiation therapy (SIRT). BMC Nuclear Medicine 2005; 5: 1-10.
  • 4 Flamen P, Vanderlinden B, Delatte P. et al. Multimodality imaging can predict the metabolic response of unresectable colorectal liver metastases to radioembolization therapy with Yttrium-90 labelled resin microspheres. Phys Med Biol 2008; 53: 6591-6603.
  • 5 Fukuda K, Taniguchi H, Hoh T. et al. Relationship between oxygen and glucose metabolism in human liver tumours: positron emission tomography using 15O and 18F-deoxyglucose. Nucl Med Commun 2004; 25: 577-583.
  • 6 Garin E, Lenoir L, Rolland Y. et al. Dosimetry based on 99nTc-macroaggregated albumin SPECT/ CT accurately predicts tumor response and survival in hepatocellular carcinoma patients treated with 90Y-loaded glass microspheres: preliminary results. J Nucl Med 2012; 53: 255-263.
  • 7 Garin E, Rolland Y, Boucher E. et al. First experience of hepatic radioembolization using microspheres labelled with yttrium-90 (Therasphere): practical aspects concerning its implementation. Eur J Nucl Med Mol Imaging 2010; 37: 453-461.
  • 8 Haug AR, Beauclair P, Donfack T. et al. 18F-FDG PET/CT predicts survival after radioembolization of hepatic metastases from breast cancer. J Nucl Med 2012; 53: 371-377.
  • 9 Hermans R, Meijerink M, van den Bogaert W. et al. Tumor perfusion rate determined non-invasively by dynamic computed tomography predicts outcome in head-and-neck cancer after radiotherapy. Int J Radiat Oncol Biol Phys 2003; 57: 1351-1356.
  • 10 Lewandowski RJ, Sato KT, Atassi B. et al. Radioembolization with 90Y microspheres: angiographic and technical considerations. Cardiovasc Intervent Radiol 2007; 30: 571-592.
  • 11 Mankoff DA, Dunnwald LK, Gralow Jr. et al. Blood flow and metabolism in locally advanced breast cancer: relationship to response to therapy. J Nucl Med 2002; 43: 500-509.
  • 12 Mertens J, Dobbeleir A, Ham H. et al. Standardized adedd metabolic activity (SAM): a partial volume independent marker of total lesion glycolysis in liver metastases. Eur J Nucl Med Mol Imaging. 2012
  • 13 Miles KA, Griffiths MR, Keith CJ. Blood flow-metabolic relationships are dependent on tumour size in non-small cell lung cancer: a study using quantitative contrast-enhanced computer tomography and positron emission tomography. Eur J Nucl Med Mol Imaging 2006; 33: 22-28.
  • 14 Miles KA, William RE. Warburg revisited: imaging tumour blood flow and metabolism. Cancer Imaging 2008; 8: 81-86.
  • 15 Miles KA, Williams RE, Yu D, Griffiths MR. Demonstrating intertumoural differences in vascular-metabolic phenotype with dynamic contrast-enhanced CT-PET. Int J Molecular Imaging 2011; 2011: 1-8.
  • 16 Salem R, Lewandowski RJ, Sato KT. et al. Technical aspects of radioembolization with 90Y microspheres. Tech Vasc Interv Radiol 2007; 10: 12-29.
  • 17 Stewart EE, Chen X, Hadway J, Lee TY. Correlation between hepatic tumor blood flow and glucose utilization in a rabbit liver tumor model. Radiology 2006; 239: 740-750.
  • 18 Van de Wiele C, Defreyne L, Peeters M, Lambert B. Yttrium-90 labelled resin microspheres for treatment of primary and secondary malignant liver tumors. Q J Nucl Med Mol Imaging 2009; 53: 317-324.
  • 19 Welsh JS, Kennedy AS, Thomadsen B. Selective internal radiation therapy (SIRT) for liver metastases secondary lo colorectal adenocarcinoma. JRBOP 2006; 66: S62-S73.
  • 20 Williams J, Zhang Y, Russell J. et al. Human tumor cells segregate into radiosensitivity groups that associate with ATM and TP53 status. Acta Oncol 2007; 46: 628-638.
  • 21 Williams J, Zhang Y, Zhou H. et al. Overview of radiosensitivity of human tumor cells to low-dose-rate irradiation. IJRBOP 2008; 72: 909-917.
  • 22 Wong CY, Savin M, Sherpa KM. et al. Regional yttrium-90 microsphere treatment of surgically unresectable and chemotherapy refractory metastatic liver carcinoma. Cancer Biother Radiopharm 2006; 21: 305-313.