Subscribe to RSS
DOI: 10.3413/Nukmed-0521-12-07
Ansprechen auf eine Docetaxel-therapie im LNCaP-Prostata-karzinom-Xenograft-Mausmodell
Untersuchung mit der [11C]Cholin-Kleintier-PET/CT[11C]choline as a pharmacodynamic marker for docetaxel therapyResponse assessment in a LNCaP prostate cancer xenograft mouse modelPublication History
eingegangen:
17 July 2012
angenommen in revidierter Form:
17 January 2013
Publication Date:
30 December 2017 (online)
Summary
The aim of this study was to determine whether [11C]choline can be used for docetaxel therapy response assessment in a LNCaPprostate cancer xenograft mouse model using [11C]choline small-animal PET/CT. Animals, methods: The androgen-dependent human prostate cancer cell line LNCaP was implanted subcutaneously into the left flanks of 17 SCID-mice, 12.5 mg testosterone platelets were implanted in the neck wrinkle. All mice were injected 4–6 weeks after xenograft implantation with 37 MBq [11C]choline via the tail vein. Dynamic imaging was performed for 60 minutes with a small-animal PET/CT scanner. After the first [11C]choline PET/CT imaging 8 mice were subsequently injected intravenously with docetaxel twice (days 1 and 5) at a dose of 3 mg/kg body weight. 8 mice were treated with PBS as a control. [11C]choline PET/CT imaging was performed on day 7, 14 and 21 after treatment. Image analysis was performed using tumor/ muscle (T/M) ratios (ROIT/ROIM = T/M ratio). Results: All LNCaP tumours could be visualized by [11C]choline PET/CT. Before treatment the mean T/M ratio was 2.0 ± 0.2 in the docetaxel-treated group and 1.9 ± 0.2 in the control group (p = 0.837). There was a reduction in the mean [11C]choline uptake after docetaxel treatment of the tumours of the LNCaP cell line as early as 1 week after initiation of therapy (T/Mmean ratio 1.5 ± 0.2 after one week, 1.3 ± 0.2 after 2 weeks and 1.4 ± 0.2 after 3 weeks). There was no decrease in [11C]choline uptake in the control group. Conclusion: Our results show that [11C]choline has the potential for use in the early monitoring of the therapeutic effect of docetaxel in a LNCaP prostate cancer xenograft animal model.
Zusammenfassung
Ziel: Untersuchung des Ansprechens auf eine Docetaxeltherapie in einem LNCaP-Prostatakarzinom-Xenograft-Mausmodell mit der [11C]Cholin-Kleintier-PET/CT. Tiere, Methoden: Die androgenabhängige humane Prostatakarzinomzelllinie LNCaP wurde subkutan in die linke Flanke von 17 SCID-Mäusen implantiert und 12.5 mg Testosteronplättchen wurden in die Nackenfalte eingebracht. 4–6 Wochen nach Tumorimplantation erfolgten nach Injektion von 37 MBq [11C]Cholin dynamische PET-Aufnahmen über 60 Minuten und CT-Aufnahmen. An Tag 1 und 5 nach der ersten [11C]Cholin PET/CT-Untersuchung wurden acht Mäuse mit Docetaxel in einer Dosierung von 3 mg/kg Körpergewicht behandelt. Die Kontrolltiere erhielten PBS. An Tag 7, 14 und 21 nach der Therapie wurden die [11C]Cholin-PET/CT-Aufnahmen wiederholt. Die Aufnahmen wurden mittels Tumor/Muskel (T/M)- Quotienten (ROIT/ROIM = T/M-Quotient) analysiert. Ergebnisse: Alle LNCaP-Tumoren konnten mit der [11C]Cholin-PET/CT dargestellt werden. Der mittlere T/M-Quotient vor der Therapie lag für die Behandlungsgruppe bei 2,0 ± 0,2 bzw. 1,9 ± 0,2 für die Kontrollgruppe (p = 0,837). Das Wachstum der Tumoren wurde im Xenograft-Mausmodell durch Docetaxel gehemmt. Die Docetaxeltherapie führte zu einer Verringerung der [11C]Cholin-Aufnahme in die Tumoren der LNCaP-Zelllinie. Der T/Mmean-Quotient der Versuchstiere war nach einer Woche 1,5 ± 0,2, nach zwei Wochen 1,3 ± 0,2 und nach drei Wochen 1,4 ± 0,2. Bei den Kontrolltieren zeigte sich keine Abnahme des T/Mmean-Quotienten. Die Änderung der [11C]Cholin-Aufnahme in die Tumoren ließ sich frühzeitig ab einer Woche im Verlauf der Therapie nachweisen. Schlussfolgerung: [11C]Cholin zeigt in der Kleintier-PET/CT das Potenzial als Marker zur Ermittlung des frühen Ansprechens auf eine Docetaxeltherapie in einem LNCaPProstatakarzinom-Xenograft-Mausmodell.
Keywords
Prostate cancer - xenograft model - LNCaP - small animal PET/CT - therapy response - docetaxel - cholineSchlüsselwörter
Prostatakarzinom - Xenograftmodell - LNCaP - Kleintier-PET/CT - Therapieansprechen - Docetaxel - Cholin* Authors contributed equally.
-
Literatur
- 1 Anderson J, Abrahamsson PA, Crawford D. et al. Management of advanced prostate cancer: can we improve on androgen deprivation therapy?. BJU Int 2008; 101: 1497-1501.
- 2 Belloli S, Jachetti E, Moresco RM. et al. Characterization of preclinical models of prostate cancer using PET-based molecular imaging. Eur J Nucl Med Mol Imaging 2009; 36: 1245-1255.
- 3 Damber JE, Aus G. Prostate cancer. Lancet 2008; 371: 1710-1721.
- 4 Fulton B, Spencer CM. Docetaxel. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy in the management of metastatic breast cancer. Drugs 1996; 51: 1075-1092.
- 5 Kolfschoten GM, Hulscher TM, Duyndam MC. et al. Variation in the kinetics of caspase-3 activation, Bcl-2 phosphorylation and apoptotic morphology in unselected human ovarian cancer cell lines as a response to docetaxel. Biochem Pharmacol 2002; 63: 733-743.
- 6 Krause BJ, Souvatzoglou M, Herrmann K. et al. [11C]Choline as pharmacodynamic marker for therapy response assessment in a prostate cancer xenograft model. Eur J Nucl Med Mol Imaging 2010; 37: 1861-1868.
- 7 Li Y, Li X, Hussain M. et al. Regulation of microtubule, apoptosis, and cell cycle-related genes by taxotere in prostate cancer cells analyzed by microarray. Neoplasia 2004; 6: 158-167.
- 8 Miller ML, Ojima I. Chemistry and chemical biology of taxane anticancer agents. Chem Rec 2001; 1: 195-211.
- 9 Muller SA, Holzapfel K, Seidl C. et al. Characterization of choline uptake in prostate cancer cells following bicalutamide and docetaxel treatment. Eur J Nucl Med Mol Imaging 2009; 36: 1434-1442.
- 10 Oudard S, Legrier ME, Boye K. et al. Activity of docetaxel with or without estramustine phosphate versus mitoxantrone in androgen dependent and independent human prostate cancer xenografts. J Urol 2003; 169: 1729-1734.
- 11 Oyama N, Akino H, Suzuki Y. et al. FDG PET for evaluating the change of glucose metabolism in prostate cancer after androgen ablation. Nucl Med Commun 2001; 22: 963-969.
- 12 Oyama N, Akino H, Suzuki Y. et al. Prognostic value of 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography imaging for patients with prostate cancer. Mol Imaging Biol 2002; 4: 99-104.
- 13 Oyama N, Akino H, Suzuki Y. et al. The increased accumulation of [18F]fluorodeoxyglucose in untreated prostate cancer. Jpn J Clin Oncol 1999; 29: 623-629.
- 14 Pascali C, Bogni A, Iwata R. et al. 11C-methylation on a C18 Sep-Pak cartridge: a convenient way to produce N-methyl-11C-choline. J Labelled Cpd Radiopharm 2000; 43: 195-203.
- 15 Price DT, Coleman RE, Liao RP. et al. Comparison of [18F]fluorocholine and [18F]fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer. J Urol 2002; 168: 273-280.
- 16 Sonpavde G, Sternberg CN. The role of docetaxel based therapy for prostate cancer in the era of targeted medicine. Int J Urol 2010; 17: 228-240.
- 17 Tang Y, Khan MA, Goloubeva O. et al. Docetaxel followed by castration improves outcomes in LNCaP prostate cancer-bearing severe combined immunodeficient mice. Clin Cancer Res 2006; 12: 169-174.
- 18 Wang Y, Revelo MP, Sudilovsky D. et al. Development and characterization of efficient xenograft models for benign and malignant human prostate tissue. Prostate 2005; 64: 149-159.
- 19 Zheng QH, Gardner TA, Raikwar S. et al. [nC]- Choline as a PET biomarker for assessment of prostate cancer tumor models. Bioorg Med Chem 2004; 12: 2887-2893.