Nuklearmedizin 2013; 52(01): 28-35
DOI: 10.3413/Nukmed-0523-12-07
Original article
Schattauer GmbH

Influence of PET reconstruction para meters on the TrueX algorithm

A combined phantom and patient studyEinfluss der PET-Rekonstruktionsparameter auf den TrueX-AlgorithmusEine kombinierte Studie am Phantom und an Patienten
B. Knäusl
1   Department of Nuclear Medicine, Medical University of Vienna / AKH Vienna, Austria
2   Department of Radiooncology, Comprehensive Cancer Center, Medical University of Vienna / AKH Vienna, Austria
4   Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Vienna, Austria
,
I. F. Rausch
1   Department of Nuclear Medicine, Medical University of Vienna / AKH Vienna, Austria
2   Department of Radiooncology, Comprehensive Cancer Center, Medical University of Vienna / AKH Vienna, Austria
,
H. Bergmann
3   Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
,
R. Dudczak
1   Department of Nuclear Medicine, Medical University of Vienna / AKH Vienna, Austria
,
A. Hirtl
1   Department of Nuclear Medicine, Medical University of Vienna / AKH Vienna, Austria
,
D. Georg
2   Department of Radiooncology, Comprehensive Cancer Center, Medical University of Vienna / AKH Vienna, Austria
4   Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Vienna, Austria
› Author Affiliations
Further Information

Publication History

received: 30 July 2012

accepted in revised form: 07 January 2013

Publication Date:
04 January 2018 (online)

Summary

With the increasing use of functional imaging in modern radiotherapy (RT) and the envisaged automated integration of PET into target definition, the need for reliable quantification of PET is growing. Reconstruction algorithms in new PET scanners employ pointspread-function (PSF) based resolution recovery, however, their impact on PET quantification still requires thorough investigation. Patients, material, methods: Measurements were performed on a Siemens PET/CT using an IEC phantom filled with varying activity. Data were reconstructed using the OSEM (Gauss filter) and the PSF TrueX (Gauss and Allpass filter) algorithm with all available products of iterations (i) and subsets (ss). The recovery coeffcient (RC) and threshold defining the real sphere volume were determined for all settings and compared to the clinical standard (4i21ss). PET acquisitions of eight lung patients were reconstructed using all algorithms with 4i21ss. Volume size and tracer uptake were determined with different segmentation methods. Results: The threshold for the TrueX was lower (up to 40%) than for the OSEM. The RC for the different algorithms and filters varied. TrueX was more sensitive to permutations of i and ss and only the RC of the OSEM stabilised with increasing number. For patient scans the difference of the volume and activity between TrueX and OSEM could be reduced by applying an adapted threshold and activity correction. Conclusion: The TrueX algorithm results in excellent diagnostic image quality, however, guidelines for native algorithms have to be extended for PSF based reconstruction methods. For appropriate tumour delineation, for the TrueX a lower threshold than the 42% recommended for the OSEM is necessary. These filter dependent thresholds have to be verified for different scanners prior to using them in multicenter trials.

Zusammenfassung

Die immer größer werdende Bedeutung funktionaler Bildgebung in der modernen Strahlentherapie und die geplante automatische Integration von PET-Bildgebung in die Ziel - volumendefinition erfordert verlässliche Quantifizierung von PET-Bildern. Rekonstruktionsalgorithmen in neuen PET-Scannern beinhalten eine Point-Spread-Function(PSF)-basierte Auflösungskorrektur, deren Einfluss auf PETQuantifizierung noch sorgfältiger Untersuchung bedarf. Patienten, Material, Methoden: Messungen erfolgten an einem Siemens PET/ CT mit einem IEC-Phantom, gefüllt mit variierender Aktivität. Aus den Daten wurden mittels OSEM- (Gauss-Filter) und PSF-basiertem TrueX-Algorithmus (Gauss- und Allpass-Filter) Bilder mit sämtlichen Kombinationen von Iterationen (i) und Subsets (ss) rekonstruiert. Recovery-Koeffizient (RC) und Schwellwert, die zum wahren Volumen führen, wurden für alle Einstellungen bestimmt und mit dem klinischen Standard (4i21ss) verglichen. Volumen und Traceraufnahme wurden mit Hilfe unterschiedlicher Segmentierungsverfahren bestimmt. Ergebnisse: Der Schwellwert für TrueX war niedriger (bis 40%) als für OSEM. Der RC hingegen variierte für verschiedene Algorithmen und Filter, wenngleich TrueX sensitiver gegenüber Permutationen von i und ss war. Lediglich der RC des OSEM stabilisierte sich mit steigender Anzahl von i und ss. Für Patientenscans konnte der Unterschied zwischen TrueX und OSEM in Volumen und Aktivität durch die Anwendung eines adaptierten Schwellwertes und einer Aktivitätskorrektur reduziert werden. Schlussfolgerung: Der TrueX- Algorithmus zeigt exzellente diagnostische Bildqualität, jedoch müssen Richtlinien für traditionelle Algorithmen erweitert werden, um auf PSF-basierte Rekonstruktionsmethoden angewendet werden zu können. Für die adäquate Einzeichnung des Tumors wird für TrueX ein niedrigerer Schwellwert als 42% benötigt, wie er für den OSEM-Algorithmus empfohlen wird. Derartige filterabhängige Schwellwerte müssen für unterschiedliche Scanner verifiziert werden, bevor sie in multizentrischen Studien verwendet werden können.

 
  • References

  • 1 Aristophanous M, Berbeco R, Killoran J. et al. Clinical utility of 4D FDG-PET/CT scans in radiation treatment planning. Int J Radiat Oncol Biol Phys 2011; 82: e99-e105.
  • 2 Black Q, Grills I, Kestin L. et al. Defining a radiotherapy target with positron emission tomography. Int J Radiat Oncol Biol Phys 2004; 60: 1272-1282.
  • 3 Boellaard R, O’Doherty M, Weber W. et al. FDG PET and PET/CT: EANM procedure guidelines for tumour pet imaging: version 1.0. Eur J Nucl Med 2010; 37: 181-200.
  • 4 Boellaard R, Oyen W, Hoekstra C. et al. The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials. Eur J Nucl Med 2008; 35: 2320-2333.
  • 5 Casey M. Point spread function reconstruction in PET. Technical report. Siemens Molecular Imaging. 2007
  • 6 Cloquet C, Sureau FC, Defrise M. et al. Non-Gaussian space-variant resolution modelling for list-mode reconstruction. Phys Med Biol 2010; 55: 5045-5066.
  • 7 Daisne J, Sibomana M, Bol A. et al. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: Influence of reconstruction algorithms. Radiother Oncol 2003; 69: 247-250.
  • 8 Devic A, Tomic N, Faria S. et al. Defining radiotherapy target volumes using 18F-fluoro-deoxy-glucose positron emission tomography/computed tomography: Still a Pandoras Box?. Int J Radiat Oncol Biol Phys 2010; 78: 1555-1562.
  • 9 Dickson J, Tossici-Bolt L, Sera T. et al. The impact of reconstruction method on the quantification of DaTSCAN images. Eurs J Nucl Med Mol Imaging 2010; 37: 23-35.
  • 10 Drever L, Roa W. McEwan et al. Iterative threshold segmentation for PET target volume delineation. Med Phys 2007; 34: 1253-1265.
  • 11 Gundlich B, Musmann P, Weber S. et al. From 2D PET to 3D PET: issues of data representation and image reconstruction. Z Med Phys 2006; 16: 31-46.
  • 12 Hoffman E, Huang S C, Phelps M. Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr 1979; 3: 299-308.
  • 13 Hofheinz F, Pötzsch C, Oehme L. et al. Automatic volume delineation in oncological PET. Nuklearmedizin 2012; 51: 9-16.
  • 14 Hudson H, Larkin R. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994; 13: 601-609.
  • 15 IEC 1998 IEC 61675–1:. Radionuclide Imaging Devices - Characteristics and Test Conditions. Part 1: Positron Emission Tomography. Geneva: IEC; Technical report.
  • 16 Jaskowiak C, Bianco J, Perlman S. et al. Influence of reconstruction iterations on 18F-FDG PET/CT standardized uptake values. J Nucl Med 2005; 46: 424-428.
  • 17 Kadrmas D. LOR-OSEM: statistical PET reconstruction from raw line-of-response histograms. Phys Med Biol 2004; 49: 4731.
  • 18 Knäusl B, Hirtl A, Dobrozemsky G. et al. PET based volume segmentation with emphasis on the iterative TrueX algorithm. Z Med Phys 2012; 22: 29-39.
  • 19 Macmanus M, Nestle U, Rosenzweig K. et al. Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006–2007. Radiother Oncol 2009; 91: 85-94.
  • 20 Mix M, Eschner W. Image reconstruction and quanti cation in emission tomography. Z Med Phys 2006; 16: 19-30.
  • 21 Nestle U, Kremp S, Grosu A. Practical integration of [18F] -FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis, ICRU target volumes, problems, perspectives. Radiother Oncol 2006; 81: 209-225.
  • 22 Panin V, Kehren F, Michel C. et al. Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging 2006; 25: 907-921.
  • 23 Panin V, Kehren F, Rothfuss H. et al. Pet reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging 2006; 53: 152-159.
  • 24 R Development Core Team 2011 R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.
  • 25 Rapisarda E, Bettinardi V, Thielemans K. et al. Image-based point spread function implementation in a fully 3D OSEM reconstruction algorithm for PET. Phys Med Biol 2010; 55: 4131.
  • 26 Schaefer A, Kremp S, Hellwig D. et al. A contrast-oriented algorithm for FDG-PE T-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med 2008; 35: 1989-1999.
  • 27 Schaefer A, Nestle U. Kremp et al. Multi-centre calibration of an adaptive thresholding method for PET-based delineation of tumour volumes in radiotherapy planning of lung cancer. Nuklearmedizin 2012; 51: 101-110.
  • 28 Shepp L, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging 1982; 1: 113-122.
  • 29 Sureau F, Reader AJ, Comtat C. et al. Impact of imagespace resolution modelling for studies with the highresolution research tomograph. J Nucl Med 2008; 49: 1000-1008.
  • 30 Thorwarth D, Beyer T, Boellard R. et al. Integration of FDG-PET/CT into external beam radiation therapy planning. Nuklearmedizin 2012; 51: 140-153.
  • 31 Varrone A, Sjöholm N, Eriksson L. et al. Advancement in PET quantification using 3D-O P-OSEM point spread function reconstruction with the HRRT. Eur J Nucl Med Mol Imaging 2009; 36: 1639-1650.
  • 32 Vees H, Senthamizhchelvan S, Miralbell R. et al. Assessment of various strategies for 18F-FET PET-guided delineation of target volumes in high-grade glioma patients. Eur J Nucl Med Mol Imaging 2009; 36: 182-193.
  • 33 Watson CC. New, faster, image-based scatter correction for 3D PET. IEEE T Nucl Sci 2000; 47: 1587-1594.