RSS-Feed abonnieren
DOI: 10.3413/Nukmed-0578-13-04
18F, 11C and 68Ga in small animal PET imaging
Evaluation of partial volume correction methods 18F, 11C und 68Ga in der präklinischen BildgebungEvaluierung von Partialvolumeneffekt- KorrekturmethodenPublikationsverlauf
received:
15. April 2013
accepted in revised form:
01. Oktober 2013
Publikationsdatum:
12. Januar 2018 (online)
Summary
Aim: The partial volume effect (PVE) significantly affects quantitative accuracy in PET. In this study we used a micro-hollow sphere phantom filled with 18F, 11C or 68Ga to evaluate different partial volume correction methods (PVC). Additionally, phantom data were applied on rat brain scans to evaluate PVC methods on in vivo datasets. Methods: The four spheres (7.81, 6.17, 5.02, 3.90 mm inner diameter) and the background region were filled to give sphere-to-background (sph/bg) activity ratios of 20 : 1, 10 : 1, 5 : 1 and 2 : 1. Two different acquisition and reconstruction protocols and three radionuclides were evaluated using a small animal PET scanner. From the obtained images the recovery coefficients (RC) and contrast recovery coefficients (CRC) for the different sph/bg ratios were calculated. Three methods for PVC were evaluated: a RC based, a CRC based and a volume of interest (VOI) based method. The most suitable PVC methods were applied to in vivo rat brain data. Results: RCs were shown to be dependent on the radionuclide used, with the highest values for 18F, followed by 11C and 68Ga. The calculated mean CRCs were generally lower than the corresponding mean RCs. Application of the different PVC methods to rat brain data led to a strong increase in time-activity curves for the smallest brain region (entorhinal cortex), whereas the lowest increase was obtained for the largest brain region (cerebellum). Conclusion: This study was able to show the importance and impact of PVE and the limitations of several PVC methods when performing quantitative measurements in small structures.
Zusammenfassung
Ziel: Der Partialvolumeneffekt (PVE) beeinflusst die quantitative Genauigkeit bei der PET. In dieser Studie wurde ein Phantom mit kleinen Kugeln verwendet, die mit 18F, 11C oder 68Ga gefüllt wurden um verschiedene PVE-Korrekturmethoden zu testen. Danach wurden die ermittelten Faktoren auf einen In-vivo-Datensatz basierend auf Rattenhirn-Scans angewendet. Methoden: Die vier kleinen Kugeln (Innendurchmesser: 7.81, 6.17, 5.02, 3.90 mm) und die Hintergrundregion wurden mit verschiedenen Aktivitätskonzentrationen gefüllt um folgende Ratios zwischen Kugeln und Hintergrund zu erhalten: 20 : 1, 10 : 1, 5 : 1 und 2 : 1. Zwei Akquisitions- und Rekonstruktionsprotokolle sowie drei Radionuklide wurden mit einem microPET-Scanner gemessen. Die Recovery-Koeffizienten (RC) und Kontrast-Recovery-Koeffizienten (CRC) wurden an Hand der Bilder berechnet. Drei Korrekturmethoden wurden getestet: eine Methode basierend auf dem RC, eine basierend auf dem CRC und eine basierend auf dem Volumen von Interesse (VOI). Danach wurden die Methoden auf den In-vivo-Datensatz angewendet. Ergebnisse: Die RCs zeigten eine starke Abhängigkeit vom Radionuklid mit den höchsten Werten für 18F, gefolgt von 11C und 68Ga. Die berechneten CRCs waren im Allgemeinen niedriger als die entsprechenden RCs. Die Anwendung der verschiedenen Korrekturmethoden auf den Rattenhirn Scan führte zu einem starken Anstieg in den Zeit- Aktivitätskurven von kleinen Hirnregionen (entorhinaler Kortex), während für größere Hirnregionen (Zerebellum) nur kleine Anstiege erhalten wurden. Schlussfolgerung: Diese Studie zeigt die Wichtigkeit und Auswirkung vom PVE sowie die Einschränkungen diverser PVE-Korrekturen bei der quantitativen Auswertung kleiner Strukturen in der präklinischen Bildgebung.
-
References
- 1 Bazañez-Borgert M, Bundschuh RA, Herz M. et al. Radioactive spheres without inactive wall for lesion simulation in PET. Zeitschrift für Medizinische Physik 2008; 18: 37-42.
- 2 Beyer T, Kinahan PE, Townsend DW. Optimization of transmission and emission scan duration in 3D whole-body PET. Ieee T Nucl Sci 1997; 44: 2400-2407.
- 3 Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med 2004; 45: 1519-1527.
- 4 Chatziioannou A, Qi J, Moore A. et al. Comparison of 3-D maximum a posteriori and filtered backprojection algorithms for high-resolution animal imaging with microPET. IEEE Trans Med Imaging 2000; 19: 507-512.
- 5 Chen CH, Muzic Jr RF, Nelson AD, Adler LP. Simultaneous recovery of size and radioactivity concentration of small spheroids with PET data. J Nucl Med 1999; 40: 118-130.
- 6 Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. Philadelphia, Pa.; [London]: W. B. Saunders; 2003: xiii 523.
- 7 De Jong HWAM, Perk L, Visser GWM. et al. (eds). High resolution PET imaging characteristics of /sup 68/Ga, /sup 124/I and /sup 89/Zr compared to /sup 18/F. Nuclear Science Symposium Conference Record, 2005 IEEE; 2005 23–29 Oct. 2005
- 8 Disselhorst JA, Brom M, Laverman P. et al. Imagequality assessment for several positron emitters using the NEMA NU 4–2008 standards in the Siemens Inveon small-animal PET scanner. J Nucl Med 2010; 51: 610-617.
- 9 Geworski L, Knoop BO, de Cabrejas ML. et al. Recovery correction for quantitation in emission tomography: a feasibility study. Eur J Nucl Med 2000; 27: 161-169.
- 10 Glien M, Brandt C, Potschka H. et al. Repeated low-dose treatment of rats with pilocarpine: low mortality but high proportion of rats developing epilepsy. Epilepsy Res 2001; 46: 111-119.
- 11 Hoffman EJ, Huang SC, Phelps ME. Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr 1979; 3: 299-308.
- 12 Holm S, Toft P, Jensen M. Estimation of the noisecontributions from blank, transmission and emission scans in PET. IEEE T Nucl Sci 1996; 43: 2285-2291.
- 13 Kessler RM, Ellis Jr JR, Eden M. Analysis of emission tomographic scan data: limitations imposed by resolution and background. J Comput Assist Tomogr 1984; 8: 514-522.
- 14 Kuntner C, Bankstahl JP, Bankstahl M. et al. Doseresponse assessment of tariquidar and elacridar and regional quantification of P-glycoprotein inhibition at the rat blood-brain barrier using (R)-[11C]verapamil PET. Eur J Nucl Med Mol Imaging 2010; 37: 942-953.
- 15 Lehnert W, Gregoire MC, Reilhac A, Meikle SR. Characterisation of partial volume effect and region- based correction in small animal positron emission tomography (PET) of the rat brain. Neuroimage 2012; 60: 2144-2157.
- 16 Levin CS, Hoffman EJ. Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Physics in Medicine and Biology 1999; 44: 781-799.
- 17 NEMA Standards Publication NU 2–2007: Performance Measurement of Positron Emission Tomographs. Washington, DC: NEMA; 2007
- 18 Prieto E, Marti-Climent JM, Arbizu J. et al. Evaluation of spatial resolution of a PET scanner through the simulation and experimental measurement of the recovery coefficient. Comput Biol Med 2010; 40: 75-80.
- 19 Phelps ME, Hoffman EJ, Huang SC, Ter-Pogossian MM. Effect of positron range on spatial resolution. J Nucl Med 1975; 16: 649-652.
- 20 Phelps ME. PET: Molecular Imaging and Its Biological Applications. Phelps ME. (ed). Berlin: Springer; 2004
- 21 Qi J, Leahy RM, Cherry SR. et al. High-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner. Physics in Medicine and Biology 1998; 43: 1001-1013.
- 22 Rousset OG, Collins DL, Rahmim A, Wong DF. Design and implementation of an automated partial volume correction in PET: application to dopamine receptor quantification in the normal human striatum. J Nucl Med 2008; 49: 1097-1106.
- 23 Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle and validation. J Nucl Med 1998; 39: 904-911.
- 24 Rousset O, Rahmim A, Alavi A, Zaidi H. Partial Volume Correction Strategies in PET. PET Clinics 2007; 2: 235-249.
- 25 Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med 2007; 48: 932-945.
- 26 Srinivas SM, Dhurairaj T, Basu S. et al. A recovery coefficient method for partial volume correction of PET images. Ann Nucl Med 2009; 23: 341-348.
- 27 Strother SC, Casey ME, Hoffman EJ. Measuring Pet Scanner Sensitivity – Relating Countrates to Image Signal-to-Noise Ratios Using Noise Equivalent Counts. IEEE T Nucl Sci 1990; 37: 783-788.
- 28 Tai YC, Ruangma A, Rowland D. et al. Performance evaluation of the microPET focus: a thirdgeneration microPET scanner dedicated to animal imaging. J Nucl Med 2005; 46: 455-463.
- 29 Valk PE. Positron emission tomography: clinical practice. London: Springer; 2006
- 30 Vanderhoek M, Perlman SB, Jeraj R. Impact of the definition of peak standardized uptake value on quantification of treatment response. J Nucl Med 2012; 53: 4-11.
- 31 Wienhard K, Schmand M, Casey ME. et al. The ECAT HRRT: performance and first clinical application of the new high resolution research tomograph. Nuclear Science, IEEE Transactions on 2002; 49: 104-110.
- 32 Zaidi H. Correction for image degrading factors is essential for accurate quantification of brain function using PET. For the proposition. Med Phys 2004; 31: 423-425.