Nuklearmedizin 2014; 53(03): 67-77
DOI: 10.3413/Nukmed-0588-13-05
Original article
Schattauer GmbH

Evaluation of PET quantification accuracy in vivo

Comparison of measured FDG concentration in the bladder with urine samplesIn-vivo-Evaluation der Quantifizierungs genauig keit der PETVergleich der gemessenen FDG-Konzentration in der Blase mit Urinproben
J. Maus
1   PET Center, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Germany
,
F. Hofheinz
1   PET Center, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Germany
,
G. Schramm
1   PET Center, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Germany
,
L. Oehme
2   Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
,
B. Beuthien-Baumann
1   PET Center, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Germany
2   Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
,
M. Lukas
3   Department of Nuclear Medicine, Charité – Universitätsmedizin Berlin, Germany
,
R. Buchert
3   Department of Nuclear Medicine, Charité – Universitätsmedizin Berlin, Germany
,
J. Steinbach
1   PET Center, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Germany
,
J. Kotzerke
2   Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
,
J. van den Hoff
1   PET Center, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Germany
2   Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
› Author Affiliations
Further Information

Publication History

received: 16 May 2013

accepted in revised form: 17 February 2013

Publication Date:
02 January 2018 (online)

Summary

Quantitative positron emission tomography (PET) requires accurate scanner calibration, which is commonly performed using phantoms. It is not clear to what extent this procedure ensures quantitatively correct results in vivo, since certain conditions differ between phantom and patient scans. Aim: We, therefore, have evaluated the actual quantification accuracy in vivo of PET under clinical routine conditions. Patients, methods: We determined the activity concentration in the bladder in patients undergoing routine [18F]FDG whole body investigations with three different PET scanners (Siemens ECAT EXACT HR+ PET: n = 21; Siemens Biograph 16 PET/CT: n = 16; Philips Gemini-TF PET/CT: n = 19). Urine samples were collected immediately after scan. Activity concentration in the samples was determined in well counters cross-calibrated against the respective scanner. The PET (bladder) to well counter (urine sample) activity concentration ratio was determined. Results: Activity concentration in the bladder (PET) was systematically lower than in the urine samples (well The patient-averaged PET to well counter ratios for the investigated scanners are (mean ± SEM): 0.881 ± 0.015 (ECAT HR+), 0.898 ± 0.024 (Biograph 16), 0.932 ± 0.024 (Gemini-TF). These values correspond to underestimates by PET of 11.9%, 10.2%, and 6.8%, respectively. Conclusions: The investigated PET systems consistently underestimate activity concentration in the bladder. The comparison of urine samples with PET scans of the bladder is a straightforward means for in vivo evaluation of the expectable quantification accuracy. The method might be interesting for multi-center trials, for additional quality assurance in PET and for investigation of PET/MR systems for which clear proof of sufficient quantitative accuracy in vivo is still missing.

Zusammenfassung

Für die Bestimmung quantitativer Parameter mittels Positronenemissionstomographie (PET) ist eine genaue Kalibrierung des PET-Scanners mit Hilfe geeigneter Phantommessungen notwendig. Auf Grund der offensichtlichen Unterschiede zwischen Phantom- und Patientenmessungen bestehen jedoch Unsicherheiten im Bezug auf die In-vivo-Genauigkeit einer solchen phantom-basierten Kalibrierung. Ziel dieser Studie war es daher die Genauigkeit einer solchen Kalibrierung mittels klinischer Routinemessungen in vivo zu evaluieren. Patienten, Methoden: Wir bestimmten die Aktivitätskonzentration in der Blase bei Patienten die an unterschiedlichen PET-Scannern eine [18F]FDG-Ganzkörperuntersuchung erhielten (Siemens ECAT EXACT HR+ PET: n = 21; Siemens Biograph 16 PET/CT: n = 16; Philips Ge- mini-TF PET/CT: n = 19). Unmittelbar nach Messung der Blasenregion gaben alle Patienten Urinproben ab. Die Aktivitätskonzentration der Urinproben wurde mit Hilfe eines kreuzkalibrierten Bohrlochzählers bestimmt. Im Anschluss wurde das Verhältnis zwischen Aktivitätskonzentration PET (Blase) zu Bohrlochzähler (Urinprobe) berechnet. Ergebnisse: Die Aktivitätskonzentration in der Blase (PET) war systematisch niedriger als die der Urinproben (Bohrlochzähler). Das über die jeweiligen Patienten gemittelte Verhältnis zwischen PET und Bohrlochzähler war für die untersuchten Scanner (Mittelwert ± SEM): 0,881 ± 0,015 (ECAT HR+), 0,898 ± 0,024 (Biograph 16), 0,932 ± 0,024 (Gemini-TF). Diese Werte entsprechen Unterschätzungen der Aktivitätskonzentration durch die PET von jeweils 11,9%, 10,2% und 6,8%. Schlussfolgerungen: Die untersuchten PET- Systeme unterschätzen die Aktivitätskonzentration in der Blase. Der direkte Vergleich von Urinproben und PET-Bildern der Blase stellt eine einfache Art der In-vivo-Evaluation der zu erwartenden Quantifizierungsgenauigkeit eines PET-Scanners dar. Die vorgestellte Me- thode kann für Multicenterstudien, für eine zusätzliche Qualitätssicherung in der PET sowie für eine Untersuchung von PET/MR- Systemen interessant sein, für die es hinsichtlich einer ausreichenden Quantifizierungsgenauigkeit in vivo noch keine belastbaren Zahlen gibt.

 
  • References

  • 1 Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med 2004; 45: 1519-1527.
  • 2 Boellaard R, O’Doherty MJ, Weber WA. et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 2010; 37: 181-200.
  • 3 Boellaard R. Need for standardization of 18F-FDG PET/CT for treatment response assessments. J Nucl Med 2011; 52 (suppl): 93S-100S.
  • 4 Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med 2009; 50 (suppl) 11S-20S.
  • 5 Delbeke D, Coleman RE, Guiberteau MJ. et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med 2006; 47: 885-895.
  • 6 Eschmann SM, Friedel G, Paulsen F. et al. 18F-FDG PET for assessment of therapy response and pre-operative re-evaluation after neoadjuvant radio-chemotherapy in stage III non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2007; 34: 463-471.
  • 7 Furth C, Steffen IG, Amthauer H. et al. Early and late therapy response assessment with [18F]fluoro-deoxyglucose positron emission tomography in pediatric Hodgkin’s lymphoma: analysis of a prospective multi-center trial. J Clin Oncol 2009; 27: 4385-4391.
  • 8 Geworski L, Knoop BO, de Wit M. et al. Multicenter comparison of calibration and cross calibration of PET scanners. J Nucl Med 2002; 43: 635-639.
  • 9 Gupta K, Pawaskar A, Basu S. et al. Potential role of FDG PET imaging in predicting metastatic potential and assessment of therapeutic response to neoadjuvant chemotherapy in Ewing sarcoma family of tumors. Clin Nucl Med 2011; 36: 973-977.
  • 10 Hays MT, Watson EE, Thomas SR, Stabin M. MIRD dose estimate report no. 19: radiation absorbed dose estimates from 18F-FDG. J Nucl Med 2002; 43: 210-214.
  • 11 Hsu CH. A study of lesion contrast recovery for iterative PET image reconstructions versus filtered backprojection using an anthropomorphic thoracic phantom. Comput Med Imaging Graph 2002; 26: 119-127.
  • 12 Israel O, Iosilevsky G, Front D. et al. SPECT quantitation of iodine-131 concentration in phantoms and human tumors. J Nucl Med 1990; 31: 1945-1949.
  • 13 Israel O, Keidar Z, Rubinov R. et al. Quantitative bone single-photon emission computed tomography for prediction of pain relief in meta-static bone disease treated with rhenium-186 etidronate. J Nucl Med 2000; 18: 2747-2754.
  • 14 Janssen MHM, Aerts HJWL, Ollers MC. et al. Tumor delineation based on time-activity curve differences assessed with dynamic fluorodeoxyglucose positron emission tomography-computed tomography in rectal cancer patients. Int J Radiat Oncol Biol Phys 2009; 73: 456-465.
  • 15 Jones SC, Alavi A, Christman D. et al. The radiation dosimetry of 2 [F-18]fluoro-2-deoxy-D-glucose in man. J Nucl Med 1982; 23: 613-617.
  • 16 Kinahan PE, Karp JS. Figures of merit for comparing reconstruction algorithms with a volume-imaging PET scanner. Phys Med Biol 1994; 39: 631-642.
  • 17 Langner J, Bühler P, Just U. et al. Optimized listmode acquisition and data processing procedures for ACS2 based PET systems. Z Med Phys 2006; 16: 75-82.
  • 18 Matheoud R, Secco C, Della Monica P. et al. The effect of activity outside the field of view on image quality for a 3D LSO-based whole body PET/CT scanner. Phys Med Biol 2009; 54: 5861-5872.
  • 19 Mejia AA, Nakamura T, Masatoshi I. et al. Estimation of absorbed doses in humans due to intravenous administration of fluorine-18-fluorodeoxyglucose in PET studies. J Nucl Med 1991; 32: 699-706.
  • 20 Moore RR, Hirata-Dulas Ca, Kasiske BL. Use of urine specific gravity to improve screening for albuminuria. Kidney Int 1997; 52: 240-243.
  • 21 Moran JK, Lee HB, Blaufox MD. Optimization of urinary FDG excretion during PET imaging. J Nucl Med 1999; 40: 1352-1357.
  • 22 Mustafovic S, Thielemans K. Object dependency of resolution in reconstruction algorithms with interiteration filtering applied to PET data. IEEE Trans Med Imag 2004; 23: 433-446.
  • 23 Purcell DD, Coakley FV, Franc BL. et al. Anterior layering of excreted 18F-FDG in the bladder on PET/CT: frequency and cause. AJR Am J Roentgenol 2007; 189: W96-W99.
  • 24 R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. www.R-project.org Vienna, Austria: 2013
  • 25 Schelbert HR, Hoh CK, Royal HD. et al. Procedure guideline for tumor imaging using fluorine-18FDG. J Nucl Med 1998; 39: 1302-1305.
  • 26 Shankar LK, Hoffman JM, Bacharach S. et al. Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute Trials. J Nucl Med 2006; 47: 1059-1066.
  • 27 Spinks TJ, Miller MP, Bailey DL. et al. The effect of activity outside the direct field of view in a 3D-only whole-body positron tomograph. Phys Med Biol 1998; 43: 895-904.
  • 28 Stayman JW, Fessler Ja. Regularization for uniform spatial resolution properties in penalized-likeli-hood image reconstruction. IEEE Trans Med Imag 2000; 19: 601-615.
  • 29 Takahashi Y, Oriuchi N, Otake H. et al. Variability of lesion detectability and standardized uptake value according to the acquisition procedure and reconstruction among five PET scanners. Ann Nucl Med 2008; 22: 543-548.
  • 30 Thomas SR, Stabin MG, Chen CT, Samaratunga RC. MIRD Pamphlet No. 14 revised: A dynamic urinary bladder model for radiation dose calculations. J Nucl Med 1999; 40: 102S-123S.
  • 31 Van Balen S, Hoving B, Boellaard R, Lammertsma A. Quality control and calibration of the ECAT HR plus PET scanner. Eur J Nucl Med 1999; 26: 1022.
  • 32 Wahl RL, Jacene H, Kasamon Y, Lodge Ma. From RECIST to PERCIST: Evolving considerations for PET response criteria in solid tumors. J Nucl Med 2009; 50 (Suppl. 05) 122S-150S.
  • 33 Weber WA. Use of PET for monitoring cancer therapy and for predicting outcome. J Nucl Med 2005; 46: 983-995.
  • 34 Westerterp M, Pruim J, Oyen W. et al. Quantification of FDG PET studies using standardised uptake values in multi-centre trials: effects of image reconstruction, resolution and ROI definition parameters. Eur J Nucl Med Mol Imaging 2007; 34: 392-404.
  • 35 Young H, Baum R, Cremerius U. et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. Eur J Cancer 1999; 35: 1773-1782.
  • 36 Zeintl J, Vija AH, Yahil A. et al. Quantitative accuracy of clinical 99mTc SPECT/CT using ordered-subset expectation maximization with 3-dimensional resolution recovery, attenuation, and scatter correction. J Nucl Med 2010; 51: 921-928.