Nuklearmedizin 2014; 53(04): 131-138
DOI: 10.3413/Nukmed-0634-13-12
Original article
Schattauer GmbH

CA 15.3 measurements for separating FDG PET/CT positive from negative findings in breast carcinoma recurrence

Factors influencing the area under the ROC curveCA15.3-Messungen zur Unterscheidung positiver und negativer FDG-PET/CT-Befunde bei MammakarzinomrezidivenFaktoren, die einen Einfluss auf die Fläche unterhalb der ROC-Kurve haben
V. Kruse
1   Division of Medical Oncology, Department of Internal Medicine, University Hospital Ghent, Belgium
,
C. Van de Wiele
2   Department of Radiology and Nuclear Medicine, University Ghent, Belgium
,
M. Borms
3   Department of Radiotherapy and Medical Oncology, AZ Groeninge, Kortrijk, Belgium
,
A. Maes
4   Department of Nuclear medicine, AZ Groeninge, Kortrijk, Belgium
,
H. Pottel
5   Subfaculty of Medicine, Catholic University Leuven, Campus Kortrijk, Belgium
,
M. Sathekge
6   Department of Nuclear Medicine, University of Pretoria, South-Africa
,
V. Cocquyt
1   Division of Medical Oncology, Department of Internal Medicine, University Hospital Ghent, Belgium
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received: 13. Dezember 2013

accepted in revised form: 13. Mai 2014

Publikationsdatum:
02. Januar 2018 (online)

Summary

In breast cancer CA 15.3 is considered the tumour marker of choice. CA 15.3 is directly related to the disease extent and to hormone status (estrogen receptor ER+/ ER-, progesterone receptor PR+/PR-). This study was designed to assess the impact of disease extent, hormone receptor and HER2-status, and circulating blood volume on the area-under the ROC-curve of CA 15.3 to separate FDG PET positive from negative findings. Patients, methods: We retrospectively evaluated 379 FDG PET/CT examinations performed in 80 patients with breast cancer. Blood volumes were derived using the formulas by Nadler and multiplied by their corresponding CA 15.3 measurement. Results: ROC-curve analysis revealed an AUC of 0.695 (p = 0.0001) for CA 15.3 to separate FDG PET positive from negative findings. AUC measurements to separate normal scan find-ings from loco-regional disease and meta- static disease were 0.527 (p = 0.587) and 0.732 (p = 0.0001), respectively. AUC measurements for CA 15.3 to separate positive from negative FDG PET findings, in ER+ and ER- patients, were respectively 0.772 (p = 0.0001) and 0.596 (p = 0.143). AUC measurements for CA 15.3 to separate positive from negative FDG PET findings, in PR+ and PR- patients, were respectively 0.675 (p = 0.0001) and 0.694 (p = 0.0001). In HER2-positive and -negative patients, the AUC measurements were respectively 0.594 (p = 0.178) and 0.701 (p = 0.0001) to separate positive from negative FDG PET findings. Conclusion: The AUC for CA 15.3 measurements to separate FDG PET positive from negative findings in breast cancer patients with suspected recurrence proved to be directly related to the extent of the recurrent disease and hormone receptor status and inversely related to HER2-status. Correcting CA 15.3 measurements for blood volumes did not impact the AUC.

Zusammenfassung

Beim Mammakarzinom gilt das Cancer Antigen (CA) 15-3 als Tumormarker der Wahl. CA 15-3 steht in direkter Beziehung zum Ausmaß der Krankheit und Hormonstatus (Östrogenrezeptor ER+/ ER-, Progesteronrezeptor PR+/PR-). Die vorliegende Studie wurde entwickelt, um den Einfluss von Krankheitsausmaß, Hormonrezeptor- und HER2-Status sowie zirkulierendem Blutvolumen auf die Fläche unterhalb der ROC-Kurve von CA 15-3 zu beurteilen und dadurch FDG-PET-positive von -negativen Befunden abzugrenzen. Patientinnen, Methoden: Retrospektiv ausgewertet wurden 379 FDG-PET/CT-Untersu- chungen von 80 Patientinnen mit Mammakarzinom. Die Blutvolumina wurden anhand der Nadler-Formel abgeleitet und mit den korrelierenden CA-15-3-Konzentrationen multipliziert. Ergebnisse: Die ROC-Analyse zeigte eine AUC von 0,695 (p = 0,0001) für CA 15-3, um FDG-PET-positive von -negativen Befunden abzugrenzen. Die Messungen ergaben eine AUC von 0,527 (p = 0,587) bei normalem Untersuchungsbefund und von 0,732 (p = 0,0001) bei örtlich begrenzter und metastasierender Krankheit. Für CA 15-3 ergaben die Messungen eine AUC von 0,772 (p = 0,0001) bei ER-positiven und 0,596 (p = 0,143) bei ER-negativen Patientinnen sowie von 0,675 (p = 0,0001) bei PR-positiven und 0,694 (p = 0,0001) bei PR-negativen Patientinnen. Die Messungen ergaben bei HER2-positiven und HER2-negativen Patientinnen eine AUC von 0,594 (p = 0,178) bzw. 0,701 (p = 0,0001). Schlussfolgerung: Die AUC für CA 15-3 zur Unterscheidung zwischen FDG-PET-positiven und FDG-PET-ne- gativen Befunden steht bei Patientinnen mit Mammakarzinom und Verdacht auf ein Rezidiv in direktem Verhältnis zum Ausmaß der erneut aufgetretenen Krankheit und zum Hormonrezeptorstatus, aber in umgekehrtem Verhältnis zum HER2-Status. Korrekturen der CA-15-3-Konzentrationen bzgl. Blutvolumen hatten keinen Einfluss auf die AUC.

 
  • References

  • 1 Balsari A, Casalini P, Tagliabue E. et al. Fluctuation of HER2 expression in breast carcinomas during the menstrual cycle. Am J Pathol 1999; 155: 1543-1547.
  • 2 Bensouda Y, André F, Boulet T. et al. Prevalence of elevated serum CA 15-3 at time of metastatic relapse of breast cancer and correlation with hormone receptor status. Bull Cancer 2009; 96: 923-928.
  • 3 Champion L, Brain E, Giraudet AL. et al. Breast cancer recurrence diagnosis suspected on tumor marker rising: value of whole-body 18FDG-PET/ CT imaging and impact on patient management. Cancer 2011; 117: 1621-1629.
  • 4 Chekhun S, Bezdenezhnykh N, Shvets J. et al. Expression of biomarkers related to cell adhesion, metastasis and invasion of breast cancer cell lines of different molecular subtype. Exp Oncol 2013; 35: 174-179.
  • 5 Cheung KL, Graves CR, Robertson JF. Tumour marker measurements in the diagnosis and monitoring of breast cancer. Cancer Treat Rev 2000; 26: 91-102.
  • 6 Colomer R, Ruibal A, Salvador L. Circulating tumor marker levels in advanced breast carcinoma correlate with the extent of metastatic disease. Cancer 1989; 64: 1674-1681.
  • 7 Duffy M. Biochemical markers in breast cancer: which ones are clinically useful?. Clin Biochemistry 2001; 34: 347-352.
  • 8 Evangelista L, Cervino AR, Ghiotto C. et al. Tumor marker-guided PET in breast cancer patients-a recipe for a perfect wedding: a systematic literature review and meta-analysis. Clin Nucl Med 2012; 37: 467-474.
  • 9 Geraghty JG, Coveney EC, Sherry F. et al. CA 15-3 in patients with locoregional and metastatic breast carcinoma. Cancer 1992; 70: 2831-2834.
  • 10 Grassetto G, Fornasiero A, Otello D. et al. 18F-FDG-PET/CT in patients with breast cancer and rising Ca 15-3 with negative conventional imaging: a multicentre study. Eur J Radiol 2011; 80: 828-833.
  • 11 Groheux D, Giacchetti S, Delord M. et al. 18F-FDG PET/CT in staging patients with locally advanced or inflammatory breast cancer: comparison to conventional staging. J Nucl Med 2013; 54: 5-11.
  • 12 Harris L, Fritsche H, Menel R. et al. American Society of Clinical Oncology 2007 Update of recommendation for the use of tumour markers in breast cancers. J Clin Oncol 2007; 25: 5287-5312.
  • 13 Hayes DF, Zurawski Jr VR, Kufe DW. Comparison of circulating CA15-3 and carcinoembryonic antigen levels in patients with breast cancer. J Clin Oncol 1986; 4: 1542-1550.
  • 14 Huang HJ, Neven P, Drijkoningen M. et al. Hormone receptors do not predict the HER2/neu status in all age groups of women with an operable breast cancer. Ann Oncol 2005; 16: 1755-1761.
  • 15 Kokko R, Holli K, Hakama M. Ca 15-3 in the follow-up of localised breast cancer: a prospective study. Eur J Cancer 2002; 38: 1189-1193.
  • 16 Kumita S, Yoshida T. et al. FDG-PET/CT in the diagnosis of recurrent breast cancer. Acta Radiol 2012; 53: 12-16.
  • 17 Park S, Ahn HK, Park LC. et al. Implications of different CA 15-3 levels according to breast cancer subtype at initial diagnosis of recurrent or meta-static breast cancer. Oncology 2012; 82: 180-187.
  • 18 Sandri MT, Salvatici M, Botteri E. et al. Prognostic role of CA15.3 in 7942 patients with operable breast cancer. Breast Cancer Res Treat 2012; 132: 317-326.
  • 19 Schiff R, Massarweh SA, Shou J. et al. Advanced concepts in estrogen receptor biology and breast cancer endocrine resistance: implicated role of growth factor signaling and estrogen receptor co-regulators. Cancer Chemother Pharmacol 2005; 56 (Suppl. 01) 10-20.
  • 20 Schmidt GP, Baur-Melnyk A, Haug A. et al. Comprehensive imaging of tumor recurrence in breast cancer patients using whole-body MRI at 1.5 and 3 T compared to FDG-PET-CT. Eur J Radiol 2008; 65: 47-58.
  • 21 Stieber P, Molina R, Chan DW. et al. Clinical evaluation of the Elecsys CA 15-3 test in breast cancer patients. Clin Lab 2003; 49: 15-24.
  • 22 Tampellini M, Berruti A, Gorzegno G. et al. Independent factors predict supranormal CA 15-3 serum levels in advanced breast cancer patients at first disease relapse. Tumour Biol 2001; 22: 367-373.
  • 23 Wei X, Xu H, Kufe D. MUC1 oncoprotein stabilizes and activates estrogen receptor alpha. Mol Cell 2006; 21: 295-305.
  • 24 Yerushalmi R, Tyldesley S, Kennecke H. et al. Tumor markers in metastatic breast cancer subtypes: frequency of elevation and correlation with outcome. Ann Oncol 2012; 23: 338-345.