Nuklearmedizin 2016; 55(05): 203-208
DOI: 10.3413/Nukmed-0811-16-03
Original article
Schattauer GmbH

SPECT/CT study of bronchial deposition of inhaled particles

A human aerosol vaccination model against HPVSPECT/CT zum Nachweis von inhalierten PartikelnHumanes Modell zur inhalativen Vakzinierung gegen HPV
Vesna Ilic
1   Department of Nuclear Medicine, Lausanne University Hospital, Lausanne, Switzerland
,
Vincent Dunet
1   Department of Nuclear Medicine, Lausanne University Hospital, Lausanne, Switzerland
,
Alain Le Pape
2   Research Center for Respiratory Diseases, François Rabelais University, Tours, France
3   TAAM-CIPA, CNRS, Orléans, France
,
Mikael Buchs
1   Department of Nuclear Medicine, Lausanne University Hospital, Lausanne, Switzerland
,
Marek Kosinski
1   Department of Nuclear Medicine, Lausanne University Hospital, Lausanne, Switzerland
,
Angelika Bischof Delaloye
1   Department of Nuclear Medicine, Lausanne University Hospital, Lausanne, Switzerland
,
Stefan Gerber
4   Gynecology Practice, Fribourg, Switzerland
,
John O. Prior
1   Department of Nuclear Medicine, Lausanne University Hospital, Lausanne, Switzerland
› Author Affiliations
Further Information

Publication History

received: 19 March 2016

accepted in revised form: 28 June 2016

Publication Date:
20 December 2017 (online)

Summary

Aims: Vaccination by aerosol inhalation can be used to efficiently deliver antigen against HPV to mucosal tissue, which is particularly useful in developing countries (simplicity of administration, costs, no need for cold chain). For optimal immunological response, vaccine particles should preferentially be delivered to proximal bronchial airways. We aimed at quantifying the deposition of inhaled particles in central airways and peripheral lung, and to assess administration biosafety. Participants, methods: 20 healthy volunteers (13W/7M, aged 24±4y) performed a 10-min free-breathing inhalation of 99mTc-stannous chloride colloid aerosol (450 MBq) in a buffer solution without vaccinal particles using an ultrasonic nebulizer (mass median aerodynamic diameter 4.2 μm) and a double mask inside a biosafety cabinet dedicated to assess environmental particle release. SPECT/CT and whole-body planar scintigraphy were acquired to determine whole-body and regional C/P distribution ratio (central-to-peripheral pulmonary deposition counts). Using a phantom, SPECT sensitivity was calibrated to obtain absolute pulmonary activity deposited by inhalation. Results: All participants successfully performed the inhalation that was well tolerated (no change in pulmonary peak expiratory flow rate, p = 0.9). It was environmentally safe (no activity released in the biosafety filter.) 1.3±0.6% (range 0.4–2.6%) of the total nebulizer activity was deposited in the lungs with a C/P distribution ratio of 0.40±0.20 (range 0.15–1.14). Conclusion: Quantification and regional distribution of inhaled particles in an aerosolized vaccine model is possible using radioactive particles. This will allow optimizing deposition parameters and determining the particles charge for active-particles vaccination.

Zusammenfassung

Die Entwicklung von Aerosol-Impfstoffen, damit durch Inhalation Antigene gegen HPV effizient im Schleimhautgewebe aufgenommen werden, könnte in Entwicklungsländern besonders wichtig sein (einfach zu applizieren, kostengünstig, kein Bedarf an Kühlkette, usw.). Um eine optimale immunologische Wirkung zu erzielen, sollte der inhalierte Impfstoff präferenziell in den proximalen Bronchien abgeschieden werden. Das Ziel dieser Studie war es, die Verteilung inhalierter Partikel in den zentralen Bronchien und in peripheren Lungenabschnitten zu messen und deren Biosicherheit zu bestimmen. Teilnehmer, Methode: 20 gesunde Versuchspersonen (13F/7M, 24±4Jahre) inhalierten während 10 Minuten unter Spontanatmung mittels eines Ultraschallverneblers (mittlerer aerodynamischer Tröpfchen-Durchmesser 4,2 μm) ein Aerosol von 99mTc-Zinnchlorid (450 MBq) in einer Pufferlösung ohne Impfstoff. Die Inhalation wurde mit einer doppelten Maske in einer speziell entwickelten Abzugshaube durchgeführt und das Austreten von Aerosol-Partikeln in die Umwelt gemessen. Die Ganzkörper Verteilung und der regionale C/P-Verteilungskoeffizient (Quotient zentrale über periphere Lungenaktivität) wurden mittels SPECT/CT und Ganzkörper-Szintigraphie bestimmt. Die SPECT-Empfindlichkeit wurde mittels eines Phantoms kalibriert, um die absolute inhalierte Aktivität in der Lunge bestimmen zu können. Ergebnisse: Die Inhalation wurde von allen Studienteilnehmern vollendet und gut vertragen (Peak Flow unverändert, p =0,9). Der Biosicherheitsfilter war frei von Radioaktivität. 1,3±0,6% (0,4–2,6%) der Gesamtaktivität des Verneblers wurde in den Lungen gemessen, mit einem C/P-Verteilungsquotienten von 0,40±0,20 (0,15–1,14). Schlussfolgerung: Die Aufnahme und regionale Verteilung inhalierter Partikel können in einem Aerosol-Impf-Modell mittels radioaktiv markierter Partikel quantitativ bestimmt werden und so zur Optimierung der Parameter beitragen, die für Verteilung und Beladung von aktiven Impfstoff-Partikeln von Bedeutung sind.

 
  • References

  • 1 Balmelli C, Roden R, Potts A. et al. Nasal immunization of mice with human papillomavirus type 16 virus-like particles elicits neutralizing antibodies in mucosal secretions. J Virol 1998; 72: 8220-8229.
  • 2 Bennett WD, Brown JS, Zeman KL. et al. Targeting delivery of aerosols to different lung regions. J Aerosol Med 2002; 15: 179-188.
  • 3 Bergquist C, Johansson EL, Lagergard T. et al. Intranasal vaccination of humans with recombinant cholera toxin B subunit induces systemic and local antibody responses in the upper respiratory tract and the vagina. Infect Immun 1997; 65: 2676-2684.
  • 4 Bosch FX, Lorincz A, Munoz N. et al. The causal relation between human papillomavirus and cervical cancer. J Clin Pathol 2002; 55: 244-265.
  • 5 Brown JS, Zeman KL, Bennett WD. Regional deposition of coarse particles and ventilation distribution in healthy subjects and patients with cystic fibrosis. J Aerosol Med 2001; 14: 443-454.
  • 6 Conway J. Lung imaging - two dimensional gamma scintigraphy, SPECT, CT and PET. Adv Drug Deliv Rev 2012; 64: 357-368.
  • 7 Conway J, Fleming J, Bennett M, Havelock T. The co-imaging of gamma camera measurements of aerosol deposition and respiratory anatomy. J Aerosol Med Pulm Drug Deliv 2013; 26: 123-130.
  • 8 Corbett M, Bogers WM, Heeney JL. et al. Aerosol immunization with NYVAC and MVA vectored vaccines is safe, simple, and immunogenic. Proc Natl Acad Sci USA 2008; 105: 2046-2051.
  • 9 Corcoran TE. Imaging in aerosol medicine. Respir Care 2015; 60: 850-855.
  • 10 Dijk PH, Heikamp A, Piers DA. et al. Surfactant nebulisation: safety, efficiency and influence on surface lowering properties and biochemical composition. Intensive Care Med 1997; 23: 456-462.
  • 11 Dolovich MB. Measuring total and regional lung deposition using inhaled radiotracers. J Aerosol Med 2001; 14 (Suppl. 01) S35-S44.
  • 12 Eberl S, Chan HK, Daviskas E. et al. Aerosol deposition and clearance measurement: a novel technique using dynamic SPET. Eur J Nucl Med 2001; 28: 1365-1372.
  • 13 Eberl S, Chan HK, Daviskas E. SPECT imaging for radioaerosol deposition and clearance studies. J Aerosol Med 2006; 19: 8-20.
  • 14 Fleming J, Conway J, Majoral C. et al. The use of combined single photon emission computed tomography and X-ray computed tomography to assess the fate of inhaled aerosol. J Aerosol Med Pulm Drug Deliv 2011; 24: 49-60.
  • 15 Fleming J, Conway J, Majoral C. et al. Controlled, parametric, individualized, 2-D and 3-D imaging measurements of aerosol deposition in the respiratory tract of asthmatic human subjects for model validation. J Aerosol Med Pulm Drug Deliv 2015; 28: 432-451.
  • 16 Fleming JS, Epps BP, Conway JH, Martonen TB. Comparison of SPECT aerosol deposition data with a human respiratory tract model. J Aerosol Med 2006; 19: 268-278.
  • 17 Gagnadoux F, Hureaux J, Vecellio L. et al. Aerosolized chemotherapy. J Aerosol Med Pulm Drug Deliv 2008; 21: 61-70.
  • 18 Gajdocsi R, Bikov A, Antus B. et al. Assessment of reproducibility of exhaled hydrogen peroxide concentration and the effect of breathing pattern in healthy subjects. J Aerosol Med Pulm Drug Deliv 2011; 24: 271-275.
  • 19 Giudice EL, Campbell JD. Needle-free vaccine delivery. Adv Drug Deliv Rev 2006; 58: 68-89.
  • 20 Jahnsen FL, Gran E, Haye R, Brandtzaeg P. Human nasal mucosa contains antigen-presenting cells of strikingly different functional phenotypes. Am J Respir Cell Mol Biol 2004; 30: 31-37.
  • 21 Jia Y, Krishnan L, Omri A. Nasal and pulmonary vaccine delivery using particulate carriers. Expert Opin Drug Deliv 2015; 12: 993-1008.
  • 22 Kotzerke J, Andreeff M, Wunderlich G. et al. Ventilation-perfusion-lungscintigraphy using PET and 68Ga-labeled radiopharmaceuticals. Nuklearmedizin 2010; 49: 203-208.
  • 23 Koutsky LA, Ault KA, Wheeler CM. et al. A controlled trial of a human papillomavirus type 16 vaccine. N Engl J Med 2002; 347: 1645-1651.
  • 24 Laube BL. The expanding role of aerosols in systemic drug delivery, gene therapy and vaccination: an update. Transl Respir Med 2014; 2: 3.
  • 25 Lemarie E, Vecellio L, Hureaux J. et al. Aerosolized gemcitabine in patients with carcinoma of the lung: feasibility and safety study. J Aerosol Med Pulm Drug Deliv 2011; 24: 261-270.
  • 26 Lerondel S, Le Pape A, Sene C. et al. Radioisotopic imaging allows optimization of adenovirus lung deposition for cystic fibrosis gene therapy. Hum Gene Ther 2001; 12: 1-11.
  • 27 Lerondel S, Vecellio None L, Faure L. et al. Gene therapy for cystic fibrosis with aerosolized adenovirus-CFTR: characterization of the aerosol and scintigraphic determination of lung deposition in baboons. J Aerosol Med 2001; 14: 95-105.
  • 28 Levine MM. Can needle-free administration of vaccines become the norm in global immunization?. Nat Med 2003; 9: 99-103.
  • 29 Nardelli-Haefliger D, Roden RB, Benyacoub J. et al. Human papillomavirus type 16 virus-like particles expressed in attenuated Salmonella typhimurium elicit mucosal and systemic neutralizing antibodies in mice. Infect Immun 1997; 65: 3328-3336.
  • 30 Nardelli-Haefliger D, Lurati F, Wirthner D. et al. Immune responses induced by lower airway mucosal immunisation with a human papillomavirus type 16 virus-like particle vaccine. Vaccine 2005; 23: 3634-3641.
  • 31 Newman S, Fleming J. Challenges in assessing regional distribution of inhaled drug in the human lungs. Expert Opin Drug Deliv 2011; 8: 841-855.
  • 32 Newman SP, Sutton DJ, Segarra R. et al. Lung deposition of aclidinium bromide from Genuair, a multidose dry powder inhaler. Respiration 2009; 78: 322-328.
  • 33 Ogra PL, Faden H, Welliver RC. Vaccination strategies for mucosal immune responses. Clin Microbiol Rev 2001; 14: 430-445.
  • 34 Polatom Kit for the preparation of 99mTc-Colloid. 2009
  • 35 Sangwan S, Agosti JM, Bauer LA. et al. Aerosolized protein delivery in asthma: gamma camera analysis of regional deposition and perfusion. J Aerosol Med 2001; 14: 185-195.
  • 36 Sawyer LJ, Starritt HC, Hiscock SC, Evans MJ. Effective doses to patients from CT acquisitions on the GE Infinia Hawkeye: a comparison of calculation methods. Nucl Med Commun 2008; 29: 144-149.
  • 37 Sitas F, Parkin DM, Chirenje M. et al. Part II: Cancer in indigenous africans--causes and control. Lancet Oncol 2008; 9: 786-795.
  • 38 Snell NJ, Ganderton D. Assessing lung deposition of inhaled medications. Consensus statement from a workshop of the British Association for Lung Research, held at the Institute of Biology, London, U.K. on 17 April 1998. Respir Med 1999; 93: 123-133.
  • 39 Tonnis WF, Lexmond AJ, Frijlink HW. et al. Devices and formulations for pulmonary vaccination. Expert Opin Drug Deliv 2013; 10: 1383-1397.
  • 40 Venegas J, Winkler T, Harris RS. Lung physiology and aerosol deposition imaged with positron emission tomography. J Aerosol Med Pulm Drug Deliv 2013; 26: 1-8.