Nuklearmedizin 2017; 56(01): 23-30
DOI: 10.3413/Nukmed-0819-16-04
Original article
Schattauer GmbH

Treatment planning in PRRT based on simulated PET data and a PBPK model

Determination of accuracy using a PET noise modelBehandlungsplanung in der PRRT basierend auf simulierten PET-Daten und einem PBPK-ModellBestimmung der Genauigkeit unter Verwendung eines Modells für das PET-Rauschen
Deni Hardiansyah
1   Medical Radiation Physics/Radiation Protection, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
2   Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
,
Wei Guo
1   Medical Radiation Physics/Radiation Protection, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
,
Ali Asgar Attarwala
1   Medical Radiation Physics/Radiation Protection, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
2   Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
,
Peter Kletting
3   Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany
,
Felix M. Mottaghy
4   Klinik für Nuklearmedizin, University Hospital, RWTH Aachen University, Aachen, Germany
5   Department of Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
,
Gerhard Glatting
1   Medical Radiation Physics/Radiation Protection, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
3   Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany
› Author Affiliations
Funding The authors gratefully acknowledge grants by “Direktorat Jendral Pendidikan Tinggi” (Directorate General of Higher Education DIKTI of Ministry for Research, Technology and Higher Education, Republic Indonesia. Grant Number: 2644/E4.4/K/2013) for DH. The authors also gratefully acknowledge the “Deutsche Forschungsgemeinschaft“ (DFG) for support (GL 236/11–1 and KL 2742/2–1), funding received for MITIGATE from the European Community’s Seventh Framework Programme (FP7/2007–20013) under grant agreement no 602306, for M2OLIE (Research Campus funded by the German Federal Ministry of Education and Research (BMBF) within the Framework “Forschungscampus: public-private partnership for Innovations”) and for Perspektivförderung „Translationale Radiochemie und Radiopharmazie“ (Land Baden-Württemberg).
Further Information

Publication History

received: 06 April 2016

accepted in revised form: 07 November 2016

Publication Date:
02 January 2018 (online)

Summary

Aim: To investigate the accuracy of treatment planning in peptide-receptor radionuclide therapy (PRRT) based on simulated PET data (using a PET noise model) and a physiologically based pharmacokinetic (PBPK) model. Methods: The parameters of a PBPK model were fitted to the biokinetic data of 15 patients. True mathematical phantoms of patients (MPPs) were the PBPK model with the fitted parameters. PET measurements after bolus injection of 150 MBq 68Ga-DOTATATE were simulated for the true MPPs. PET noise with typical noise levels was added to the data (i.e. c=0.3 [low], 3, 30 and 300 [high]). Organ activity data in the kidneys, tumour, liver and spleen were simulated at 0.5, 1 and 4 h p.i. PBPK model parameters were fitted to the simulated noisy PET data to derive the PET-predicted MPPs. Therapy was simulated assuming an infusion of 3.3 GBq of 90Y-DOTATATE over 30 min. Time-integrated activity coefficients (TIACs) of simulated therapy in tumour, kidneys, liver, spleen and remainder were calculated from both, true MPPs (true TIACs) and predicted MPPs (predicted TIACs). Variability v between true TIACs and predicted TIACs were calculated and analysed. Variability< 10 % was considered to be an accurate prediction. Results: For all noise level, variabilities for the kidneys, liver, and spleen showed an accurate prediction for TIACs, e.g. c=300: vkidney=(5 ± 2)%, vliver=(5 ± 2)%, vspleen=(4 ± 2)%. However, tumour TIAC predictions were not accurate for all noise levels, e.g. c=0.3: vtumour=(8 ± 5)%. Conclusion: PET based treatment planning with kidneys as the dose limiting organ seems possible for all reported noise levels using an adequate PBPK model and previous knowledge about the individual patient.

Zusammenfassung

Ziel: Untersuchung der Genauigkeit der Behandlungsplanung in der Peptidrezeptor-Ra- dionuklid-Therapie (PRRT) basierend auf simulierten PET-Daten und einem physiologisch ba- siertenpharmakokinetischen (PBPK) Modell. Methoden: Die Parameter eines PBPK-Modells wurden für die biokinetischen Daten von 15 Patienten bestimmt. Mathematische Patien- ten-Phantome (wahre MPP) wurden als PBPK- Modell mit den geschätzten Parametern definiert. PET-Messungen nach Bolus-Injektion von 150 MBq 68Ga-DOTATATE wurden mittels der wahren MPP simuliert. Rauschen wurde für typische Rauschpegel zu den Daten hinzugefügt: c=0.3 (niedrig), 3, 30 und 300 (hoch). Organ-Aktivitätsdaten für Nieren, Tumor, Leber und Milz wurden 0,5, 1und 4 h nach Injektion simuliert. Die PBPK-Modellparameter wurden an die simulierten PET-Daten angepasst, um die PET-vorhergesagten MPP herzuleiten. Die Therapie wurde für beide (wahre und vorhergesagte) MPP simuliert für den Fall einer Infusion von 3,3 GBq von 90Y-DOTATATE über 30 min. Die Zeit-integrierten AktivitätsKoeffizienten (TIACs) der simulierten Therapie wurden für Tumor, Nieren, Leber, Milz und Restkörper für beide (wahre und vorhergesagte) MPP berechnet. Die Variabilität v zwischen wahren und vorhergesagten TIAC wurde berechnet und analysiert. Eine Variabilität < 10 % wurde als genaue Vorhersage angesehen. Ergebnisse: Für alle Rauschpegel zeigten die Variabilitäten für Leber, Nieren, und Milz eine genaue Vorhersage für die TI- ACs, z.B. c=300: vNiere=(5 ± 2)%, vLeber- = (5 ± 2)%, vMilz=(4 ± 2)%. Jedoch sind die Vorhersagen für die Tumor-TIACs für alle Geräuschpegel ungenau, z.B. c=0,3: vTumor=- (8 ± 5)%. Schlussfolgerung: Eine PET-basier- te Behandlungsplanung erscheint für alle untersuchten Rauschpegel für die Nieren als dosislimitierendes Organ möglich bei Verwendung eines geeigneten PBPK-Modells zusammen mit individuellem Vorwissen.

 
  • References

  • 1 Bison SM, Konijnenberg MW, Melis M. et al. Peptide receptor radionuclide therapy using radiolabeled somatostatin analogs: focus on future developments. Clin Transl Imaging 2014; 2: 55-66.
  • 2 Poeppel TD, Boy C, Bockisch A. et al. [Peptide receptor radionuclide therapy for patients with somatostatin receptor expressing tumours. German Guideline (S1)]. Nuklearmedizin 2015; 54 (01) 1-11.
  • 3 Dewaraja YK, Frey EC, Sgouros G. et al. MIRD pamphlet No. 23: quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy. J Nucl Med 2012; 53 (08) 1310-1325.
  • 4 Pereira JM, Stabin MG, Lima FR. et al. Image quantification for radiation dose calculations – limitations and uncertainties. Health Phys 2010; 99 (05) 688-701.
  • 5 Gabriel M, Decristoforo C, Kendler D. et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 2007; 48 (04) 508-518.
  • 6 Rahmim A, Zaidi H. PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun 2008; 29 (03) 193-207.
  • 7 Hänscheid H, Sweeney RA, Flentje M. et al. PET SUV correlates with radionuclide uptake in peptide receptor therapy in meningioma. Eur J Nucl Med Mol Imaging 2012; 39 (08) 1284-1288.
  • 8 Heppeler A, Froidevaux S, Eberle AN, Maecke HR. Receptor targeting for tumor localisation and therapy with radiopeptides. Curr Med Chem 2000; 7 (09) 971-994.
  • 9 Velikyan I, Sundin A, Sorensen J. et al. Quantitative and qualitative intrapatient comparison of 68Ga-DOTATOC and 68Ga-DOTATATE: net uptake rate for accurate quantification. J Nucl Med 2014; 55 (02) 204-210.
  • 10 Hardiansyah D, Begum NJ, Kletting P. et al. Sensitivity Analysis of a Physiologically Based Pharmacokinetic Model Used for Treatment Planning in Peptide Receptor Radionuclide Therapy. Cancer Biother Radiopharm 2016; 31 (06) 217-224.
  • 11 Hardiansyah D, Guo W, Kletting P. et al. Time-integrated activity coefficient estimation for radionuclide therapy using PET and a pharmacokinetic model: A simulation study on the effect of sampling schedule and noise. Med Phys 2016; 43 (09) 5145.
  • 12 Hardiansyah D, Maass C, Attarwala AA. et al. The role of patient-based treatment planning in peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging 2016; 43 (05) 871-880.
  • 13 Kletting P, Bunjes D, Reske SN, Glatting G. Improving anti-CD45 antibody radioimmunotherapy using a physiologically based pharmacokinetic model. J Nucl Med 2009; 50 (02) 296-302.
  • 14 Kletting P, Kull T, Bunjes D. et al. Optimal preloading in radioimmunotherapy with anti-CD45 antibody. Med Phys 2011; 38 (05) 2572-2578.
  • 15 Kletting P, Kull T, Bunjes D. et al. Radioimmunotherapy with anti-CD66 antibody: improving the biodistribution using a physiologically based pharmacokinetic model. J Nucl Med 2010; 51 (03) 484-491.
  • 16 Kletting P, Kull T, Maass C. et al. Optimized Peptide Amount and Activity for 90Y-Labeled DOTA-TATE Therapy. J Nucl Med 2016; 57 (04) 503-508.
  • 17 Kletting P, Maass C, Reske S. et al. Physiologically Based Pharmacokinetic Modeling Is Essential in 90Y-Labeled Anti-CD66 Radioimmunotherapy. PLoS One 2015; 10 (05) e0127934.
  • 18 Kletting P, Müller B, Erentok B. et al. Differences in predicted and actually absorbed doses in peptide receptor radionuclide therapy. Med Phys 2012; 39 (09) 5708-5717.
  • 19 Sullivan JM, Kim SJ, Cosgrove KP, Morris ED. Limitations of SRTM, Logan graphical method, and equilibrium analysis for measuring transient dopamine release with [11C]raclopride PET. Am J Nucl Med Mol Imaging 2013; 3 (03) 247-260.
  • 20 Logan J, Fowler JS, Volkow ND. et al. A strategy for removing the bias in the graphical analysis method. J Cereb Blood Flow Metab 2001; 21 (03) 307-320.
  • 21 Logan J. Graphical analysis of PET data applied to reversible and irreversible tracers. Nucl Med Biol 2000; 27 (07) 661-670.
  • 22 Geworski L, Schaefer A, Knoop BO. et al. Physical aspects of scintigraphy-based dosimetry for nuclear medicine therapy. Nuklearmedizin. 2010; 49 (03) 85-95.
  • 23 Glatting G, Landmann M, Kull T. et al. Internal radionuclide therapy: the ULMDOS software for treatment planning. Med Phys 2005; 32 (07) 2399-2405.
  • 24 Glatting G, Landmann M, Wunderlich A. et al. Internal radionuclide therapy: software for treatment planning using tomographic data. Nuklearmedizin 2006; 45 (06) 269-272.
  • 25 Leggett RW, Williams LR. A proposed blood circulation model for Reference Man. Health Phys 1995; 69 (02) 187-201.
  • 26 Reubi JC, Schar JC, Waser B. et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med 2000; 27 (03) 273-282.
  • 27 Ferl GZ, Dumont RA, Hildebrandt IJ. et al. Derivation of a compartmental model for quantifying 64Cu-DOTA-RGD kinetics in tumor-bearing mice. J Nucl Med 2009; 50 (02) 250-8.
  • 28 Edwards WB, Fields CG, Anderson CJ. et al. Generally applicable, convenient solid-phase synthesis and receptor affinities of octreotide analogs. J Med Chem 1994; 37 (22) 3749-3757.
  • 29 Barrett PH, Bell BM, Cobelli C. et al. SAAM II: Simulation, Analysis, and Modeling Software for tracer and pharmacokinetic studies. Metabolism 1998; 47 (04) 484-492.
  • 30 Kletting P, Schimmel S, Kestler HA. et al. Molecular radiotherapy: the NUKFIT software for calculating the time-integrated activity coefficient. Med Phys 2013; 40 (10) 102504.
  • 31 Haug AR, Auernhammer CJ, Wangler B. et al. 68Ga-DOTATATE PET/CT for the early prediction of response to somatostatin receptor-mediated radionuclide therapy in patients with well-differentiated neuroendocrine tumors. J Nucl Med 2010; 51 (09) 1349-1356.
  • 32 Haug AR, Cindea-Drimus R, Auernhammer CJ. et al. The role of 68Ga-DOTATATE PET/CT in suspected neuroendocrine tumors. J Nucl Med 2012; 53 (11) 1686-1692.
  • 33 Sadowski SM, Millo C, Cottle-Delisle C. et al. Results of 68Gallium-DOTATATE PET/CT Scanning in Patients with Multiple Endocrine Neoplasia Type 1. J Am Coll Surg 2015; 221 (02) 509-517.
  • 34 Glatting G, Reske SN. Treatment of radioactive decay in pharmacokinetic modeling: influence on parameter estimation in cardiac 13N-PET. Med Phys 1999; 26 (04) 616-621.
  • 35 Glatting G, Bardiès M, Lassmann M. Treatment planning in molecular radiotherapy. Z Med Phys 2013; 23 (04) 262-269.
  • 36 Kiraly F, Kletting P, Reske S, Glatting G. Modelling radioimmunotherapy with anti-CD45 antibody to obtain a more favourable biodistribution. Nuklearmedizin 2009; 48 (03) 113-119.
  • 37 Cremonesi M, Botta F, Di Dia A. et al. Dosimetry for treatment with radiolabelled somatostatin analogues. A review. Q J Nucl Med Mol Imaging 2010; 54 (01) 37-51.