Nuklearmedizin 2017; 56(04): 147-155
DOI: 10.3413/Nukmed-0871-16-12
Originalarbeit
Schattauer GmbH

Diagnostischer Stellenwert der multiparametrischen MRT mit gezielter Fusionsbiopsie der Prostata bei Patienten mit PSA-Anstieg und negativer Stanzbiopsie zur Detektion klinisch signifikanter Prostatakarzinome

Korrelation mit dem Gleason ScoreDiagnostic significance of multiparametric MRI combined with US-fusion guided biopsy of the prostate in patients with increased PSA levels and negative standard biopsy results to detect significant prostate cancerCorrelation with the Gleason score
Manuela A. Hoffmann
1   Supervisory Center for Medical Radiation Protection, Bundeswehr Medical Service Headquarters, Koblenz, Germany
6   Department of Nuclear Medicine, University Medical Center Mainz, Mainz, Germany
,
Helmut J. Wieler
2   Clinic for Nuclear Medicine, Central Military Hospital, Koblenz, Germany
,
Frank M. Jakobs
3   German Air Force Center for Aerospace Medicine, Fürstenfeldbruck, Germany
,
Kasra Taymoorian
4   Praxis Urologie Koblenz, Koblenz, Germany
,
Arnd Gerhards
5   Radiologisches Institut Dr. von Essen, Koblenz, Germany
,
Matthias Miederer
6   Department of Nuclear Medicine, University Medical Center Mainz, Mainz, Germany
,
Mathias Schreckenberger
6   Department of Nuclear Medicine, University Medical Center Mainz, Mainz, Germany
› Author Affiliations
Further Information

Publication History

received: 23 December 2016

accepted in revised form: 09 June 2017

Publication Date:
04 January 2018 (online)

Zusammenfassung

Ziel: Die multiparametrische MRT (mpMRT) in Verbindung mit einer perinealen gezielten Ultraschall (US)-Fusionsbiopsie soll die diagnostische Präzision bei der Diagnose des klinisch signifikanten Prostatakarzinoms steigern und die Überdiagnose niedrigmaligner Karzinome reduzieren.Methoden: Bei 99 Männern mit vorherigen negativen Standardbiopsien und erhöhtem PSA wurde eine mpMRT durchgeführt und anschließend ul traschallgestützte gezielte perineale Fusionsbiopsien entnommen. Die mittels mpMRT gewonnenen PI-RADS-Daten (PS) und der histopathologisch erhobene Gleason Score (GS) wurden miteinander verglichen.Ergebnisse: Bei der mpMRT wurden bei 72/99 Patienten (73 %) Läsionen des PS 4 oder 5 gefunden. Histopathologisch zeigte sich bei 33/99 Patienten (33 %) kein Anhaltspunkt für Malignität. Bei 66 Patienten wurde trotz vorheriger negativer konventioneller Stanzbiopsien in 42 Fällen (64 %) ein low-grade- (GS 6, ≤ 7a) und in 24 Fällen (36 %) ein High-grade-Karzinom (GS ≥ 7b) entdeckt. Bei 21/24 high-grade-Karzinomen (88 %) war auch bei der mpMRT ein Karzinom detektiert worden (PS 4-5). Bei einer Sensitivität von 88 % fand sich ein negativer prädiktiver Wert (NPV) von 85 % (p=0,002). Darüber hinaus wurde bei 35 von 42 low-grade-Karzinomen (83 %) in der mpMRT ein Karzinom-Befund (PS 4-5) erhoben (p < 0,001). Die Sensitivität für eine Differenzierung zwischen low- und high- grade-Karzinomen (GS ≤ 7a vs. ≥ 7b) mittels PS betrug 88 % bei einem NPV von 70 % (p=0,74).Schlussfolgerung: Die Ergebnisse der vorliegenden Studie weisen darauf hin, dass die mpMRT-gestützte US-Fusionsbiop- sie erheblich höhere Detektionsraten zum Nachweis klinisch signifikanter Prostatakarzinome aufweist als die bislang gebräuchlichen Diagnoseverfahren. Jedoch konnte keine statistische Signifikanz bezüglich der Differenzierung zwischen high- und low-gra- de-Karzinomen gezeigt werden. Es ist zu hoffen, dass die Hybridverfahren PSMA- PET/CT bzw. PSMA-PET/MRT in der bis jetzt nicht befriedigenden Signifikanz bei der Differenzierung zwischen high- und low-gra- de-Karzinomen den nächsten Optimierungsschritt herbeiführen werden.

Summary

Aims: To increase diagnostic precision and to reduce overtreatment of low-risk malignant disease, multiparametric MRI (mpMRI) combined with ultrasound (US) fusion guided biopsy of the prostate were performed.Methods: In 99 male patients with increased PSA plasma levels and previous negative standard biopsy procedures, mpMRI was carried out followed by US fusion guided perineal biopsy. PI-RADS-Data (PS) of mpMRI and histopathological Gleason score (GS) were categorized and statistically compared.Results: Lesions in 72/99 (73 %) of patients were determined to be suspect of malignan cy, based on a PS 4 or 5. In 33/99 (33 %) of patients, malignancy could not be confirmed by histopathology. With regard to the remaining 66 patients with previous negative biopsy results, 42 (64 %) were diagnosed with a low- grade carcinoma (GS 6, 7a) and 24 (36 %) with a high-grade carcinoma (GS ≥ 7b). The proportion of corresponding results in mpMRI (PS 4-5) when a high-grade carcinoma had been detected, was 21/24 (88 %), which related to a sensitivity of 88 % and a negative predictive value (NPV) of 85 % (p = 0,002). In addition, 35 of 42 patients (83%), graded PS 4-5 in mpMRI, were diagnosed with low- grade carcinoma-positive (p < 0,001). Sensitivity to differentiation between low- and highgrade carcinomas (GS ≤ 7a vs. ≥ 7b) by means of PS was 88 % with a NPV of 70 % (p = 0,74).Conclusion: Our results suggest that mpMRI combined with US-fusion guided biopsy is able to detect considerably higher rates of clinically relevant prostate malignancies compared to conventional diagnostic procedures. However, no statistical significance could be shown regarding the differentiation between high- and low-grade carcinomas. It is hoped that the hybrid methods PSMA-PET/ CT or PSMA-PET/MRI will lead to the next optimization step in the differentiation between high- and low-grade carcinomas which so far has been unsatisfactory.

 
  • Literatur

  • 1 Afshar-Oromieh A, Malcher A, Eder M. et al. PET imaging with a (68Ga)gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Molec Imag 2013; 40 (04) 486-495.
  • 2 Barentsz J. Mr. Prostate’s MRI dream: „Yes, we scan!”. Europ Hospital 2015; 5: 15.
  • 3 Barentsz JO, Richenberg J, Clements R. et al. ESUR prostate MR guidelines 2012. Eur Radiol 2012; 22 (04) 746-757.
  • 4 Branger N, Maubon T, Traumann M. et al. Is negative multiparametric magnetic resonance imaging really able to exclude significant prostate cancer? The real-life experience. BJU Intern 2017; 119 (03) 449-455.
  • 5 Bratan F, Niaf E, Melodelima C. et al. Influence of imaging and histological factors on prostate cancer detection and localisation on multiparametric MRI: a prospective study. Eur Radiol 2013; 23 (07) 2019-2029.
  • 6 Cash H, Gunzel K, Maxeiner A. et al. Prostate cancer detection on transrectal ultrasonography-guided random biopsy despite negative real-time magnetic resonance imaging/ultrasonography fusion-guided targeted biopsy: reasons for targeted biopsy failure. BJU Intern 2016; 118 (01) 35-43.
  • 7 Costa DN, Kay FU, Pedrosa I. et al. An initial negative round of targeted biopsies in men with highly suspicious multiparametric magnetic resonance findings does not exclude clinically significant prostate cancer-Preliminary experience. Urol Oncol 2017; 35 (04) 149.e15-149.e21.
  • 8 Delongchamps NB, Lefevre A, Bouazza N. et al. Detection of significant prostate cancer with magnetic resonance targeted biopsies–should transrectal ultrasound-magnetic resonance imaging fusion guided biopsies alone be a standard of care?. J Urol 2015; 193 (04) 1198-1204.
  • 9 Distler F, Radtke JP, Kesch C. et al. (Value of MRI/ ultrasound fusion in primary biopsy for the diagnosis of prostate cancer). Urologe 2016; 55 (02) 146-155.
  • 10 Eiber M, Weirich G, Holzapfel K. et al. Simultaneous68Ga-PSMA HBED-CC PET/MRI improves the localization of primary prostate cancer. Eur Urol 2016; 70 (05) 829-36.
  • 11 Franiel T, Asbach P, Teichgraber U. et al. Prostate Imaging – An Update. RoFo 2015; 187 (09) 751-759.
  • 12 Franiel T, Eckardt N, Waginger M. et al. Prostatakarzinom. Radiologe 2014; 54: 491-507.
  • 13 Franiel T, Hamm B, Hricak H. Dynamic contrastenhanced magnetic resonance imaging and pharmacokinetic models in prostate cancer. Eur Radiol 2011; 21 (03) 616-626.
  • 14 Franiel T, Ludemann L, Rudolph B. et al. Evaluation of normal prostate tissue, chronic prostatitis, and prostate cancer by quantitative perfusion analysis using a dynamic contrast-enhanced inversion-prepared dual-contrast gradient echo sequence. Invest Radiol 2008; 43 (07) 481-487.
  • 15 Haffner J, Lemaitre L, Puech P. et al. Role of magnetic resonance imaging before initial biopsy: comparison of magnetic resonance imaging-targeted and systematic biopsy for significant prostate cancer detection. BJU Intern 2011; 108 (8 Pt 2) E171-E178.
  • 16 Heidegger I, Skradski V, Steiner E. et al. high risk of under-grading and -staging in prostate cancer patients eligible for active surveillance. PloS One 2015; 10 (02) e0115537.
  • 17 Hernandez J, Thompson IM. Prostate-specific antigen: a review of the validation of the most commonly used cancer biomarker. Cancer 2004; 101 (05) 894-904.
  • 18 Hricak H. Imaging prostate cancer. J Urol 1999; 162 (04) 1329-1330.
  • 19 Junker D, Quentin M, Nagele U. et al. Evaluation of the PI-RADS scoring system for mpMRI of the prostate: a whole-mount step-section analysis. W J Urol 2015; 33 (07) 1023-1030.
  • 20 Junker D, Schafer G, Heidegger I. et al. Multiparametric magnetic resonance imaging/transrectal ultrasound fusion targeted biopsy of the prostate: preliminary results of a prospective single-centre study. Urol Intern 2015; 94 (03) 313-318.
  • 21 Kang DE, Fitzsimons NJ, Presti Jr. JC. et al. Risk stratification of men with Gleason score 7 to 10 tumors by primary and secondary Gleason score: results from the SEARCH database. Urology 2007; 70 (02) 277-282.
  • 22 Kesch C, Vinsensia M, Radtke JP. et al. Intraindividueller Vergleich von 18F-PSMA-PET/CT, mpMRT und radikalem Prostatektomiepräparat bei Männern mit primär diagnostiziertem Prostatakarzinom. Nuklearmedizin 2017; 56: V54.
  • 23 Krohn T, Verburg FA, Pufe T. et al. ((68)Ga)PSMA-HBED uptake mimicking lymph node metastasis in coeliac ganglia: an important pitfall in clinical practice. Eur J Nucl Med Molec Imag 2015; 42 (02) 210-214.
  • 24 Kuru TH, Roethke MC, Seidenader J. et al. Critical evaluation of magnetic resonance imaging targeted, transrectal ultrasound guided transperineal fusion biopsy for detection of prostate cancer. J Urol 2013; 190 (04) 1380-1386.
  • 25 Langer DL, van der Kwast TH, Evans AJ. et al. Intermixed normal tissue within prostate cancer: effect on MR imaging measurements of apparent diffusion coefficient and T2 – sparse versus dense cancers. Radiology. 2008; 249 (03) 900-908.
  • 26 Lindenberg L, Ahlman M, Turkbey B. et al. Advancement of MR and PET/MR in Prostate Cancer. Semin Nucl Med 2016; 46 (06) 536-543.
  • 27 Lokant MT, Naz RK. Presence of PSA auto-antibodies in men with prostate abnormalities (prostate cancer/benign prostatic hyperplasia/prostatitis). Andrologia 2015; 47 (03) 328-332.
  • 28 Makarov DV, Sanderson H, Partin AW. et al. Gleason score 7 prostate cancer on needle biopsy: is the prognostic difference in Gleason scores 4 + 3 and 3 + 4 independent of the number of involved cores?. J Urol 2002; 167 (06) 2440-2442.
  • 29 Nassiri N, Margolis DJ, Natarajan S, Sharma DS, Huang J, Dorey FJ, Marks LS. Targeted biopsy to detect Gleason Score upgrading during active surveillance for men with low versus intermediate risk prostate cancer. J Urol 2017; 197: 632-639.
  • 30 Oliveira IS, Pontes-Junior J, Abe DK. et al. Undergrading and understaging in patients with clinically insignificant prostate cancer who underwent radical prostatectomy. International Braz J Urol 2010; 36 (03) 292-299.
  • 31 Parker C, Muston D, Melia J. et al. A model of the natural history of screen-detected prostate cancer, and the effect of radical treatment on overall survival. Br J Cancer 2006; 94 (10) 1361-1368.
  • 32 Pokorny MR, de Rooij M, Duncan E. et al. Prospective study of diagnostic accuracy comparing prostate cancer detection by transrectal ultrasound-guided biopsy versus magnetic resonance (MR) imaging with subsequent MR-guided biopsy in men without previous prostate biopsies. Eur Urol 2014; 66 (01) 22-29.
  • 33 Radtke JP, Kuru TH, Boxler S. et al. Comparative analysis of transperineal template saturation prostate biopsy versus magnetic resonance imaging targeted biopsy with magnetic resonance imagingultrasound fusion guidance. J Urol 2015; 193 (01) 87-94.
  • 34 Rapiti E, Schaffar R, Iselin C. et al. Importance and determinants of Gleason score undergrading on biopsy sample of prostate cancer in a population-based study. BMC Urol 2013; 13: 19.
  • 35 Rastinehad AR, Waingankar N, Turkbey B. et al. Comparison of Multiparametric MRI Scoring Systems and the Impact on Cancer Detection in Patients Undergoing MR US Fusion Guided Prostate Biopsies. PloS One 2015; 10 (11) e0143404.
  • 36 Renard-Penna R, Mozer P, Cornud F. et al. Prostate Imaging Reporting and Data System and Likert Scoring System: Multiparametric MR Imaging Validation Study to Screen Patients for Initial Biopsy. Radiology 2015; 275 (02) 458-468.
  • 37 Roethke MC, Kuru TH, Schultze S. et al. Evaluation of the ESUR PI-RADS scoring system for multiparametric MRI of the prostate with targeted MR/ TRUS fusion-guided biopsy at 3.0 Tesla. Eur Radiol 2014; 24 (02) 344-352.
  • 38 Rosenkrantz AB, Kim S, Lim RP. et al. Prostate cancer localization using multiparametric MR imaging: comparison of Prostate Imaging Reporting and Data System (PI-RADS) and Likert scales. Radiology 2013; 269 (02) 482-492.
  • 39 Rosenkrantz AB, Mendrinos S, Babb JS. et al. Prostate cancer foci detected on multiparametric magnetic resonance imaging are histologically distinct from those not detected. J Urol 2012; 187 (06) 2032-2038.
  • 40 Rud E, Klotz D, Rennesund K. et al. Detection of the index tumour and tumour volume in prostate cancer using T2-weighted and diffusion-weighted magnetic resonance imaging (MRI) alone. BJU Intern 2014; 114 6b E32-42.
  • 41 Schroder FH, Hugosson J, Roobol MJ. et al. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med 2009; 360 (13) 1320-1328.
  • 42 Sciarra A, Panebianco V, Ciccariello M. et al. Value of magnetic resonance spectroscopy imaging and dynamic contrast-enhanced imaging for detecting prostate cancer foci in men with prior negative biopsy. Clin Canc Res 2010; 16 (06) 1875-1883.
  • 43 Shapiro RH, Johnstone PA. Risk of Gleason grade inaccuracies in prostate cancer patients eligible for active surveillance. Urology 2012; 80 (03) 661-666.
  • 44 Siddiqui MM, Rais-Bahrami S, Turkbey B. et al. Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA 2015; 313 (04) 390-397.
  • 45 Weinreb JC, Barentsz JO, Choyke PL. et al. PI-RADS Prostate Imaging – Reporting and Data System: 2015, Version 2. Eur Urol 2016; 69 (01) 16-40.
  • 46 Woodfield CA, Tung GA, Grand DJ. et al. Diffusion-weighted MRI of peripheral zone prostate cancer: comparison of tumor apparent diffusion coefficient with Gleason score and percentage of tumor on core biopsy. AJR 2010; 194 (04) W316-22.
  • 47 Wright Jr. GL, Haley C, Beckett ML. et al. Expression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues. Urol Oncol 1995; 1 (01) 18-28.
  • 48 Zamboglou C, Wieser G, Hennies S. et al. MRI versus (68)Ga-PSMA PET/CT for gross tumour volume delineation in radiation treatment planning of primary prostate cancer. Eur J Nucl Med Molec Imag 2016; 43 (05) 889-897.
  • 49 Zelhof B, Pickles M, Liney G. et al. Correlation of diffusion-weighted magnetic resonance data with cellularity in prostate cancer. BJU Intern 2009; 103 (07) 883-888.
  • 50 Zhang Q. et al. Comparison of free-hand transperineal mpMRI/TRUS fusion-guided biopsy with transperineal 12-core systematic biopsy for the diagnosis of prostate cancer: a single-center prospective study in China. Int Urol Nephrol 2016; 49 (03) 439-448.
  • 51 Woythal N, Kempkensteffen C, Miller K. et al. Ga-68 PSMA PET/CT in the detection of primary prostate cancer: an initial experience. Nuklearmedizin 2017; 56: V48.