Subscribe to RSS
DOI: 10.3413/Nukmed-0887-17-03
Association between active brown adipose tissue and coronary artery calcification in healthy men
Assoziation zwischen aktivem braunen Fettgewebe und Koronararterienkalzifizierung bei gesunden MännernPublication History
received:
08 March 2017
accepted in revised form:
31 July 2017
Publication Date:
04 January 2018 (online)
Summary
Aim: We compared various clinical factors between persons with active brown adipose tissue (ABAT) and matched controls, and investigated the relationship between the presence of ABAT and coronary artery calcification (CAC) with respect to arterial inflammation.Methods: We retrospectively reviewed fluorine-18-labeled fluoro- 2-deoxy-D-glucose (F-18 FDG) positron emission tomography/computed tomography (PET/CT) data from men who underwent general health check-ups. Sixty-seven men with ABAT were identified and were matched with controls at a 1:1 ratio. Peripheral blood samples were obtained and the levels of various laboratory parameters were measured just before FDG PET/CT studies. Arterial inflammation was measured in the ascending aorta, venous mean standardized uptake value (SUV) was collected from the superior vena cava as FDG uptake on PET, and background-corrected SUV was calculated as the target-to-background ratio (TBR) and blood- subtracted SUVmax (bsSUVmax). CAC was as-sessed using CT images acquired from a PET/ CT scanner.Results: The prevalence of fatty liver (p = 0.048) and CAC (p = 0.026) was lower in men with ABAT compared to matched controls. Arterial SUVmax (1.72 ± 0.23 vs. 1.88 ± 0.23, p < 0.001), TBR (1.18 ± 0.14 vs. 1.29 ± 0.13, p < 0.001), and bsSUVmax (0.25 ± 0.18 vs. 0.41 ± 0.16, p < 0.001) were significantly lower in men with ABAT. ABAT (odds ratio [OR] = 0.19, p=0.024) and high- density lipoprotein cholesterol (OR = 0.95, p = 0.037) were independent factors associated with CAC according to multiple logistic regression analysis.Conclusion: ABAT is associated with down-regulated arterial inflammation and may exert a protective effect against the development of atherosclerosis.
Zusammenfassung
Ziel: Wir haben verschiedene klinische Faktoren zwischen Personen mit aktivem braunen Fettgewebe (ABAT) und gematchten Kontrollen verglichen und den Zusammenhang zwischen dem Vorhandensein von ABAT und Koronararterienkalzifizierung (CAC) hinsichtlich arterieller Entzündung untersucht.Methoden: Wir untersuchten retrospektiv F-18 FDG PET/CT Daten von Männern, die sich einem allgemeinen Gesundheitscheck unterzogen hatten. 67 Männer mit ABAT wurden identifiziert und 1:1 mit Kontrollen gematcht. Aus peripheren Blutproben wurden vor der FDG- PET/CT-Untersuchung diverse Laborparameter bestimmt. Die arterielle Entzündung wurde in der Aorta ascendens gemessen. Der mittlere venöse SUV („standardized uptake value”) anhand der FDG-Aufnahme im PET in der oberen Hohlvene ermittelt. Der Hinter- grund-korrigierte SUV wurde als target-to- background-Ratio (TBR) und blood-subtracted SUVmax (bsSUVmax) berechnet. Die CAC wurde mithilfe von CT-Aufnahmen eines PET/CT-Scanners bestimmt.Ergebnisse: Die Prävalenz einer Fettleber (p = 0,048) und CAC (p = 0,026) war geringer bei Männern mit ABAT im Vergleich zu gematchten Kontrollen. Arterieller SUVmax (1,72 ± 0,23 vs. 1,88 ± 0,23, p < 0,001), TBR (1,18 ± 0,14 vs. 1,29 ± 0,13, p < 0,001) und bsSUVmax (0,25 ± 0,18 vs. 0,41 ± 0,16, p < 0,001) waren bei Männern mit ABAT signifikant geringer. ABAT (Odds ratio [OR] = 0,19, p = 0,024) und HDL-Cholesterol (OR = 0,95, p = 0,037) waren in einer multiplen logistischen Regressionsanalyse unabhängige Faktoren, die mit CAC assoziiert waren.Schlussfolgerung: ABAT ist assoziiert mit einer herunterregulierten arteriellen Entzündung und übt möglicherweise einen schützenden Effekt gegen die Entwicklung einer Atherosklerose aus.
-
References
- 1 Baba S, Jacene HA, Engles JM. et al. CT Hounsfield units of brown adipose tissue increase with activation: preclinical and clinical studies. J Nucl Med 2010; 51: 246-250.
- 2 Bartelt A, Bruns OT, Reimer R. et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med 2011; 17: 200-205.
- 3 Bauwens M, Wierts R, van Royen B. et al. Molecular imaging of brown adipose tissue in health and disease. Eur J Nucl Med Mol Imaging 2014; 41: 776-791.
- 4 Blomberg BA, Thomassen A, de Jong PA. et al. Impact of personal characteristics and technical factors on quantification of sodium 18F-fluoride uptake in human arteries: prospective evaluation of healthy subjects. J Nucl Med 2015; 56: 1534-1540.
- 5 Cohade C, Osman M, Pannu HK. et al. Uptake in supraclavicular area fat (“USA-Fat”): description on 18F-FDG PET/CT. J Nucl Med 2003; 44: 170-176.
- 6 Figueroa AL, Abdelbaky A, Truong QA. et al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events. JACC Cardiovasc Imaging 2013; 6: 1250-1259.
- 7 Goel M, Wong ND, Eisenberg H. et al. Risk factor correlates of coronary calcium as evaluated by ultrafast computed tomography. Am J Cardiol 1992; 70: 977-980.
- 8 Gustafson B, Hammarstedt A, Andersson CX. et al. Inflamed adipose tissue: a culprit underlying the metabolic syndrome and atherosclerosis. Arterioscler Thromb Vasc Biol 2007; 27: 2276-2283.
- 9 Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005; 352: 1685-1695.
- 10 Heeren J, Munzberg H. Novel aspects of brown adipose tissue biology. Endocrinol Metab Clin North Am 2013; 42: 89-107.
- 11 Khedoe PP, Hoeke G, Kooijman S. et al. Brown adipose tissue takes up plasma triglycerides mostly after lipolysis. J Lipid Res 2015; 56: 51-59.
- 12 Kirsch J, Buitrago I, Mohammed TL. et al. Detection of coronary calcium during standard chest computed tomography correlates with multi-detector computed tomography coronary artery calcium score. Int J Cardiovasc Imaging 2012; 28: 1249-1256.
- 13 Kortelainen ML. Association between cardiac pathology and fat tissue distribution in an autopsy series of men without premortem evidence of cardiovascular disease. Int J Obes Relat Metab Disord 1996; 20: 245-252.
- 14 Kronmal RA, McClelland RL, Detrano R. et al. Risk factors for the progression of coronary artery calcification in asymptomatic subjects: results from the multi-ethnic study of atherosclerosis (MESA). Circulation 2007; 115: 2722-2730.
- 15 Perkins AC, Mshelia DS, Symonds ME. et al. Prevalence and pattern of brown adipose tissue distribution of 18F-FDG in patients undergoing PET-CT in a subtropical climatic zone. Nucl Med Commun 2013; 34: 168-174.
- 16 Pfannenberg C, Werner MK, Ripkens S. et al. Impact of age on the relationships of brown adipose tissue with sex and adiposity in humans. Diabetes 2010; 59: 1789-1793.
- 17 Rudd JH, Myers KS, Bansilal S. et al. Atherosclerosis inflammation imaging with18F-FDGPET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med 2008; 49: 871-878.
- 18 Rudd JH, Myers KS, Bansilal S. et al. (18)Fluoro-deoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J Am Coll Cardiol 2007; 50: 892-896.
- 19 Rudd JH, Warburton EA, Fryer TD. et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002; 105: 2708-2711.
- 20 Saito M, Okamatsu-Ogura Y, Matsushita M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 2009; 58: 1526-1531.
- 21 Tahara N, Kai H, Ishibashi M. et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 2006; 48: 1825-1831.
- 22 Takx RA, Ishai A, Truong QA. et al. Supraclavicular brown adipose tissue18F-FDG uptake and cardiovascular disease. J Nucl Med 2016; 57: 1221-1225.
- 23 Takx RA, MacNabb MH, Emami H. et al. Increased arterial inflammation in individuals with stage 3 chronic kidney disease. Eur J Nucl Med Mol Imaging 2016; 43: 333-339.
- 24 Tawakol A, Migrino RQ, Bashian GG. et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 2006; 48: 1818-1824.
- 25 Tews D, Wabitsch M. Renaissance of brown adipose tissue. Horm Res Paediatr 2011; 75: 231-239.
- 26 Tota-Maharaj R, Blaha MJ, Blankstein R. et al. Association of coronary artery calcium and coronary heart disease events in young and elderly participants in the multi-ethnic study of atherosclerosis: a secondary analysis of a prospective, population-based cohort. Mayo Clin Proc 2014; 89: 1350-1359.
- 27 Van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM. et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med 2009; 360: 1500-1508.
- 28 Wang L, Jerosch-Herold M, Jacobs Jr DR. et al MESA Study Investigators.Coronary artery calcification and myocardial perfusion in asymptomatic adults. J Am Coll Cardiol 2006; 48: 1018-1026.
- 29 Willerson JT, Ridker PM. Inflammation as a cardiovascular risk factor. Circulation 2004; 109: II2-II10.
- 30 Wong ND, Kouwabunpat D, Vo AN. et al. Coronary calcium and atherosclerosis by ultrafast computed tomography in asymptomatic men and women: relation to age and risk factors. Am Heart J 1994; 127: 422-430.
- 31 Wu YW, Kao HL, Huang CL. et al. The effects of 3-month atorvastatin therapy on arterial inflammation, calcification, abdominal adipose tissue and circulating biomarkers. Eur J Nucl Med Mol Imaging 2012; 39: 399-407
- 32 Yilmaz Y, Ones T, Purnak T. et al. Association between the presence of brown adipose tissue and nonalcoholic fatty liver disease in adult humans. Aliment Pharmacol Ther 2011; 34: 318-323.
- 33 Yoneshiro T, Aita S, Matsushita M. et al. Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans. Obesity (Silver Spring) 2011; 19: 1755-1760.