Nuklearmedizin 2017; 56(05): 191-200
DOI: 10.3413/Nukmed-0893-17-04
Review
Schattauer GmbH

Different patterns of dopaminergic and serotonergic dysfunction in manic, depressive and euthymic phases of bipolar disorder

Verschiedene Muster dopaminerger und serotonerger Dysfunktion in manischen, depressiven und euthymischen Phasen der bipolaren Störungen
Susanne Nikolaus
1   Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
,
Hans-Wilhelm Müller
1   Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
,
Hubertus Hautzel
1   Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
› Author Affiliations
Further Information

Publication History

received: 11 April 2017

accepted in revised form: 10 July 2017

Publication Date:
04 January 2018 (online)

Summary

A variety of alterations in brain neurotransmitter systems has been proposed as the cause of bipolar disorder (BD). We conducted a PUBMED search, which provided a total of 45 in vivo investigations with PET and SPECT, in which binding to serotonin transporter (SERT), 5-HT1A receptor (R), 5-HT2AR, dopamine transporter (DAT), vesicular monoamine transporter (VMAT2), D1R, D2R, muscarinic M2R and nicotinic ß2-nAChR as well as dopamine synthesis and/or dopamine release were assessed in BD patients in the manic (6 studies, 39 patients, 77 controls), depressive (15 studies, 248 patients, 488 controls) or eu- thymic condition (18 studies, 265 patients, 293 controls) and in mixed collectives of BD patients (6 studies, 55 patients, 80 controls). The retrospective analysis revealed a complex pattern of dysregulations within and between neurotransmitter systems, which is causally linked to the acute and euthymic states of BD. While increased mesencephalic, limbic and parietotemporoccipital serotonin and increased frontal dopamine underlie mania, the depressive state is characterized by decreased frontal and limbic serotonin, increased frontal and limbic acetylcholine and increased frontal dopamine. Also in euthymia, no normalization of receptor and transporter densities was observed. Alterations of regulation states of bindings sites, however, act together to achieve a normalization of mesencephalic, limbic and cortical serotonin.

Zusammenfassung

Verschiedenen Veränderungen in den Neurotransmittersystemen des Gehirns wird eine Rolle bei der bipolaren Störung (BD) zugeschrieben. Eine PUBMED-Recherche ergab insgesamt 45 in vivo Untersuchungen mit PET oder SPECT, in denen die Bindung an den Serotonintransporter (SERT), den 5-HT1A-Rezeptor (R), den 5-HT2AR, den Dopamintransporter (DAT), den vesikulären Monoamintransporter (VMAT2), den D1R, den D2R, den muskarini- schen M2R und den nikotinischen ß2-nAChR, die Dopaminsynthese und/oder die Dopaminfreisetzung in bipolaren Patienten im manischen (6 Studien, 39 Patienten, 77 Kontrollen), depressiven (15 Studien, 248 Patienten, 488 Kontrollen) oder euthymen Zustand (18 Studien, 265 Patienten, 293 Kontrollen) und in gemischen Kollektiven (6 Studien, 55 Patienten, 80 Kontrollen) untersucht wurden. Die retrospektive Analyse ergab ein komplexes Muster von Fehlregulationen innerhalb und zwischen den Neurotransmittersystemen, die in kausalem Zusammenhang mit den akuten und euthymen Zuständen stehen. Während der Manie erhöhte mesenzephale, limbische und parietotemporookzipitale Serotoninkonzentrationen sowie eine erhöhte frontale Dopaminkonzentration zu Grunde liegen, ist der depressive Zustand durch eine Erniedrigung der frontalen und limbischen Serotoninkonzentration, erhöhte frontale und limbische Azetylcholinkonzentrationen sowie eine erhöhte frontale Dopaminkonzentration gekennzeichnet. Auch im euthymen Zustand wurde keine Normalisierung der Rezeptor- und Transporterdichten gefunden. Veränderungen im Regulationszustand der Bindungsstellen wirken jedoch zusammen, um eine Normalisierung der mesenzephalen, limbischen und kortikalen Serotoninkonzentrationen zu erreichen.

 
  • References

  • 1 Alex KD, Pehek EA. Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission. Pharmacol Ther 2007; 113: 296-320.
  • 2 Benkirane S, Arbilla S, Langer SZ. A functional response to D1 dopamine receptor stimulation in the central nervous system: inhibition of the release of [3H]-serotonin from the rat substantia nigra. Naunyn Schmiedebergs Arch Pharmacol 1987; 335: 502-507.
  • 3 Berk M, Dodd S, Kauer-SantAnna M. et al. Dopamine dysregulation syndrome : implications for a dopamine hypothesis of bipolar disorder. Acta Psychiat Scna 2007; 116: 41-49.
  • 4 Best J, Nijhout HF, Reed M. Serotonin synthesis, release and reuptake in terminals: a mathematical model. Theor Biol Med Model 2010; 7: 34.
  • 5 Boyd JH, Weissman MM. Epidemiology of affective disorders.A reexamination and future directions. Arch Gen Psychiatry 1981; 38: 1039-1046.
  • 6 Bourin M, Prica C. The role of mood stabilisers in the treatment of the depressive facet of bipolar disorders. Neurosci Biobehav Rev 2007; 31: 963-975.
  • 7 Bratlien U, Oie M, Haug E. et al. Environmental factors during adolescence associated with later development of psychotic disorders – a nested case-control study. Psychiatry Res 2014; 215: 579-585.
  • 8 Cassidy F, Yatham LN, Berk M, Grof P. Pure and mixed manic subtypes: a review of diagnostic classification and validation. Bipolar Disord 2008; 10: 131-143.
  • 9 Colom F, Vieta E. Sudden glory revisited: cognitive contents of hypomania. Psychother Psychosom 2007; 76: 278-288.
  • 10 Coryell W, Leon AC, Turvey C. et al. The significance of psychotic features in manic episodes: a report from the NIMH collaborative study. J Affect Disord 2001; 67: 79-88.
  • 11 de Bartolomeis A, Buonagura EF, Iasevoli F, Tomasetti C. The emerging role of dopamine-glutamate interaction and of the postsynaptic density in bipolar disorder pathophysiology: Implications for treatment. J Psychopharmacol 2014; 28: 505-526.
  • 12 Deeks ED, Keating GM. Olanzapine/fluoxetine: a review of its use in the treatment of acute bipolar depression. Drugs 2008; 68: 1115-1137.
  • 13 Etain B, Aas M, Andreassen OA. et al. Childhood trauma is associated with severe clinical characteristics of bipolar disorders. J Clin Psychiatry 2013; 74: 991-998.
  • 14 Ferré S, Cortés R, Artigas F. Dopaminergic regulation of the serotonergic raphe-striatal pathway: microdialysis studies in freely moving rats. J Neurosci. 1994; 14: 4839-4846.
  • 15 Giorguieff MF, Le Floch ML. Presynaptic receptors of nicotinic and muscarinic types in the control of the spontaneous release of DA from striatal dopaminergic terminals in the rat. J Pharmacol Exp Ther 1990; 200: 535-544.
  • 16 Hirano H, Day J, Fibiger HC. Serotonergic regulation of acetylcholine release in rat frontal cortex. J Neurochem 1995; 65: 1139-1145.
  • 17 Kieseppä T, Partonen T, Haukka J. et al. High concordance of bipolar I disorder in a nationwide sample of twins. Am J Psychiatry 2004; 161: 1814-1821.
  • 18 Lehmann J, Langer SZ. The striatal cholinergic interneuron: synaptic target of dopaminergic terminals?. Neuroscience 1983; 10 (04) 1105-1120.
  • 19 Lenox RH, Wang L. Molecular basis of lithium action: integration of lithium-responsive signaling and gene expression networks. Mol Psychiatry 2003; 8: 135-144.
  • 20 Marchi M, Fontana G, Paudice P, Raiteri M. The activation of phosphatidylinositol turnover is not directly involved in the modulation of neurotransmitter release mediated by presynaptic muscarinic receptors. Neurochem Res 1988; 13: 903-907.
  • 21 Möhler H. The legacy of the benzodiazepine receptor: from flumazenil to enhancing cognition in Down syndrome and social interaction in autism. Adv Pharmacol 2015; 72: 1-36.
  • 22 Nikolaus S, Antke C, Kley K. et al. Investigating the dopaminergic synapse in vivo.I Molecular imaging studies in humans. Rev Neurosci 2007; 18: 439-472.
  • 23 Nikolaus S, Antke C, Müller HW. In vivo imaging of synaptic function in the central nervous system. II. Mental and affective disorders. Behav Brain Res 2009; 204: 32-66.
  • 24 Nikolaus S, Hautzel H, Heinzel A, Müller HW. Key players in major and bipolar depression – A retrospective analysis of in vivo imaging studies. Behav Brain Res 2012; 232: 358-390.
  • 25 Nikolaus S, Beu M, Antke C, Müller HW. Cortical GABA, striatal dopamine and midbrain serotonin as the key players in compulsive and anxiety disorders – Results from in vivo imaging studies. Rev Neurosci 2010; 21: 119-139.
  • 26 Nikolaus S, Hautzel H, Müller HW. Neurochemical dysfunction in treated and nontreated schizophrenia – A retrospective analysis of in vivo imaging studies. Rev Neurosci 2014; 25: 25-96.
  • 27 Nikolaus S, Hautzel H, Müller HW. Focus on GABAA receptor function – a comparative analysis of in vivo imaging studies on neuropsychiatric disorders. Nuklearmedizin 2014; 53: 227-237.
  • 28 Nikolaus S, Müller HW, Hautzel H. Different patterns of 5-HT receptor and transporter dysfunction in neuropsychiatric disorders – a comparative analysis of in vivo imaging findings. Rev Neurosci 2016; 27: 27-59.
  • 29 Rada PV, Mark GP, Hoebel BG. In vivo modulation of acetylcholine in the nucleus accumbens of freely moving rats: I.Inhibition by serotonin. Brain Res. 1993; 619: 98-104.
  • 30 Rosenberg G. The mechanisms of action of valproate in neuropsychiatric disorders: can we see the forest for the trees?. Cell Mol Life Sci 2007; 64: 2090-2103.
  • 31 Severance EG, Gressitt KI, Yang S. et al. Seroreactive marker for inflammatory bowel disease and associations with antibodies to dietary proteins in bipolar disorder. Bipolar Disord 2014; 16: 230-240.
  • 32 Shiah I. S, Yatham LN. Serotonin in mania and in the mechanisms of acton of mood stabilizers: a review of clinical studies. Bipolar Disord 2000; 2: 27-92.
  • 33 Sigitova E, Fisar Z, Hroudova J. et al. Biological hypotheses and biomarkers in bipolar disorder. Psychiatry Clin Neurosci 2017; 71: 77-103.
  • 34 Song J, Bergen SE, Kuja-Halkola R. et al. Bipolar disorder and ist relation to major psychiatric disorders: a family-based study in the Swedish population. Bipolar Disord 2015; 17: 184-193.
  • 35 van Enkhuizen J, Janowsky DS, Olivier B. et al. The catecholaminergic-cholinergic balance hypotheis of bipolar disorder revisited. Eur J Pharmacol 2015; 753: 114-126.
  • 36 de Bartolomeis A, Buonaguro EF, Iasevoli F, Tomasetti C. The emerging role of dopamine-glutamate interaction and of the postsynaptic density in bipolar disorder pathophysiology: Implications for treatment. J Psychopharmacol 2014; 6: 505-526.