Nuklearmedizin 2018; 57(06): 242-246
DOI: 10.3413/Nukmed-0933-18-08
Original Article
Georg Thieme Verlag KG Stuttgart · New York

Examination of the complexation ability of different calixarene derivatives towards [223Ra]RaCl2 in a hospital radiopharmaceutical laboratory

Untersuchung der Komplexierungsfähigkeit verschiedener Calixarenderivate gegenüber [223Ra] RaCl2 in einem radiopharmazeutischen Labor eines Krankenhauses
Martin Freesmeyer
1   Klinik für Nuklearmedizin, Universitätsklinikum Jena, Am Klinikum 1, 07747 Jena, Germany
,
Wolfgang Weigand
2   Institut für Anorganische und Analytische Chemie, Friedrich-Schiller Universität Jena, Humboldt-Straße 8, 07743 Jena, Germany
,
Thomas Weisheit
1   Klinik für Nuklearmedizin, Universitätsklinikum Jena, Am Klinikum 1, 07747 Jena, Germany
› Author Affiliations
Further Information

Publication History

received: 21 August 2018

accepted: 28 September 2018

Publication Date:
14 December 2018 (online)

Summary

Aim: In this contribution we investigated the potential transfer of an established method for the synthesis of 223Ra-labelled calixarene complexes to a hospital radiopharmaceutical environment. For this purpose, commercially available [223Ra]RaCl2 solution in pharmaceutical grade (Xofigo®) was reacted with three calixarene derivatives. Methods: A wellestablished two-phase extraction method using a two-phase solvent system was performed for complexation of the radium ions with calixarenes under slightly basic conditions. Moreover, the complexation reaction was conducted in homogenous medium (water / THF) as well as under elevated temperature. Results: The investigated reaction conditions did not allow the isolation of the desired products. Analytical evidence for the presence of radium-calixarene species by means of activity measurement, TLC as well as HPLC could not been proven unambiguously. Conclusion: We address the non-conversion of the educts to the large excess of sodium ions in the used Xofigo® solution, what may explain the hampered reaction for all conducted experiments. Finally the transfer of the published complexation concept into a radiopharmaceutical routine environment was not successful.

Zusammenfassung

Ziel: Ziel der vorliegenden Arbeit ist es, eine bekannte Methode zur Synthese von 223Ramarkierten Calixaren-Komplexen zunächst auf ihre Reproduzierbarkeit zu prüfen und gegebenenfalls für die Anwendung in einem radiopharmazeutischen Arbeitsbereich einer Klinik zu adaptieren. Als Ausgangsnuklid wurde kommerziell verfügbares [223Ra]RaCl2 in pharmazeutischer Qualität (Xofigo®) eingesetzt. Dieses wurde mit verschiedenen Calixarenderivaten umgesetzt. Methoden: Die Komplexierungsreaktion wurde sowohl mittels einer in der Literatur beschriebenen Zwei-Phasen-Extraktion als auch in einem homogenen Lösungsmittelgemisch (THF/Wasser) bei schwach basischen Bedingungen durchgeführt. Weiterhin wurde die Reaktionstemperatur variiert. Resultate: Bei keiner der durchgeführten Umsetzungen konnte die Bildung des postulierten Produkts durch spezifische Analysenmethoden wie Aktivitätsmessung, Radio-Dünnschichtchromatographie-Scans sowie Hochleistungsflüssigkeitschromatographie (HPLC) nachgewiesen werden. Schlussfolgerungen: Das Ausbleiben der Komplexierung ist wahrscheinlich auf den extrem hohen Überschuss an Natriumionen in der verwendeten Xofigo®-Lösung zurückzuführen. Die Anwendung der publizierten Komplexierungsmethode in einem radiopharmazeutischen Kliniklabor ist nicht möglich.

 
  • References

  • 1 Cleasson AK, Stenerlöw B, Jacobsson L. et al. Relative biological effectiveness of the α-particle emitter 211At for double-strand break induction in human fibroblasts. Radiation Research 2007; 167: 312-318.
  • 2 Vaidyanathan G, Larsen RH, Zalutsky MR. 5-[211At]Astato-2’-deoxyuridine, an α-particleemitting endoradiotherapeutic agent undergoing DNA incorporation. Cancer Research 1996; 56: 1204-1209.
  • 3 Humm JL. Dosimetric aspects of radiolabeled antibodies for tumor therapy. J Nucl Med 1986; 27: 1490-1497.
  • 4 Sgouros G. Alpha-particles for targeted therapy. Advanced Drug Delivery Reviews 2008; 60: 1402-1406.
  • 5 Vaidyanathan G, Larsen RH, Zalutsky MR. Applications of 211At and 223Ra in targeted alpha-particle radiotherapy. Curr Radiopharm 2011; 04 (04) 283-294.
  • 6 Wadas TJ, Pandaya DN, Sai KKS. et al. Molecular targeted α-particle therapy for oncologic applications. Am J Roentgenol 2014; 203 (02) 253-260.
  • 7 Nonnekens J, Chatalic KLS, Molkenboer-Kuenen JDM. et al. 213Bi-labeled prostate-specific membrane antigen-targeting agents induce DNA double-strand breaks in prostate cancer xenografts. Cancer Biother Radiopharm 2017; 32 (02) 67-73.
  • 8 Roscher M, Hormann I, Leib O. et al. Targeted alpha-therapy using [Bi-213]anti-CD20 as novel treatment option for radio- and chemoresistant non-Hodgkin lymphoma cells. Oncotarget 2013; 04: 218-230.
  • 9 Wild D, Frischknecht M, Zhang H. et al. Alphaversus beta-particle radiopeptide therapy in a human prostate cancer model (213Bi-DOTAPESIN and 213Bi-AMBA versus177Lu-DOTAPESIN). Cancer Res 2011; 71 (03) 1009-1018.
  • 10 Zalutsky MR, Garg PK, Friedman HS. et al. Labeling monoclonal antibodies and F(ab’)2 fragments with the α-particle-emitting nuclide astatine-211: Preservation of immunoreactivity and in vivo localizing capacity. Proc Natl Acad Sci USA 1989; 86: 7149-7153.
  • 11 Zalutsky MR, Reardon DA, Pozzi OR. et al. Targeted α-particle radiotherapy with 211At-labeled monoclonal antibodies. Nucl Med Biol 2007; 34: 779-785.
  • 12 Kratochwil C, Bruchertseifer F, Giesel FL. et al. 225Ac-PSMA-617 for PSMA-targeted α-radiation therapy of metastatic castration-resistant prostate cancer. J Nucl Med 2016; 57 (12) 1941-1944.
  • 13 McDevitt MR, Ma D, Simon J. et al. Design and synthesis of 225Ac radioimmunopharmaceuticals. Appl Radiat Isot 2002; 57: 841-847.
  • 14 Jadvar H, Quinn DI. Targeted α-particle therapy of bone metastases in prostate cancer. Clin Nucl Med 2013; 38 (12) 966-971.
  • 15 Parker C, Nilsson S, Heinrich D. et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med 2013; 369 (03) 213-223.
  • 16 Gott M, Steinbach J, Mamat C. The radiochemical and radiopharmaceutical applications of radium. Open Chem 2016; 14: 118-129.
  • 17 Chen X, Ji M, Fischer DR. et al. Ionizable calixarene-crown ethers with high selectivity for radium over light alkaline earth metal ions. Inorg Chem 1999; 38: 5449-5452.
  • 18 Henriksen G, Hoff P, Larsen RH. Evaluation of potential chelating agents for radium. Appl Radiat Isot 2002; 56: 667-671.
  • 19 Van Leeuwen FWB, Beijleveld H, Miermans CJH. et al. Ionizable (Thia)calix[4]crowns as highly selective 226Ra2+ ionophores. Anal Chem 2005; 77: 4611-4617.
  • 20 Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst 1976; A32: 751-767.
  • 21 Steinberg J, Bauer D, Reissig F. et al. Modified calix[4]crowns as molecular receptors for barium. ChemistryOpen 2018; 07: 432-438.
  • 22 Bauer D, Gott M, Steinbach J, Mamat C. Chelation of heavy group 2 (radio)metals by p-tert-butylcalix[4]arene-1,3-crown-6 and logK determination via NMR. Spectrochim Acta A 2018; 199: 50-56.
  • 23 Pibida L, Zimmerman B, Fizgerald R. et al. Determination of photon emission probabilities for the main gamma rays of 223Ra in equilibrium with its progeny. Appl Radiat Isot 2015; 101: 15-19.
  • 24 Flux GD. Imaging and dosimetry for radium-223: the potential for personalized treatment. Br J Radiol 2017; 90 (1077): 20160748.