Subscribe to RSS
DOI: 10.3413/Nukmed-0954-17-12
Untersuchungen zur kombinierten internen-externen Radiotherapie (CIERT) am Zellmodell
Combined internal-external radiotherapy (CIERT) in a cell modelPublication History
received:
21 December 2017
accepted in revised form:
20 March 2018
Publication Date:
05 June 2018 (online)
Zusammenfassung
Ziel: Eine kombinierte interne-externe Radiotherapie (CIERT) erfordert eine einheitliche Betrachtung der biologischen Strahlenwirkung. Dafür sollte der Formalismus der Biologisch Effektiven Dosis (BED) am Zellmodell überprüft werden. Methoden: NIS-positive Schilddrüsenzellen FRTL-5 wurden mit Röntgenstrahlung oder/und mit Tc-99m-Pertechnetat bestrahlt. Anoder Abwesenheit von Perchlorat konnte die aktive zelluläre Aufnahme des Radiotracers während 24 h Bestrahlungsdauer verhindern oder zulassen. Die Dosisbestimmung für die Radionuklidbestrahlung erfolgte auf Basis gemessener Uptakewerte mittels Monte-Carlo-Simulation. Aus Dosiswirkungskurven mit Koloniebildungs-Assay als biologischem Endpunkt wurden zellspezifische radiobiologische Parameter abgeleitet. Für Kombinationsbestrahlungen unter Variation von Reihenfolge und Zeitabstand wurde das Zellüberleben mit Vorhersagewerten des BED-Formalismus verglichen. Ergebnisse: Die für Röntgenbestrahlung ermittelten Parameter α = (0,22 ± 0,02) Gy-1, β = (0,021 ± 0,001) Gy-2 und Reparaturhalbwertszeit (1,51 ± 0,21) h erklären auch die Dosiswirkungskurven für Tc-99m-Pertechnetat mit exponentiell fallender Dosisleistung. Die CIERT-Experimente zeigten keine signifikanten Unterschiede bezüglich Reihenfolge und Bestrahlungspause, jedoch bei Radionuklidaufnahme in die Zellen ein geringeres Überleben als durch die BED vorhergesagt. Schlussfolgerung: Am Zellmodell konnte verifiziert werden, dass die BED grundsätzlich zur Beschreibung von biologischen Strahleneffekten bei unterschiedlichen Strahlenqualitäten und Dosisleistungen anwendbar ist. Ob bei intrazellulärer Radionuklidaufnahme in Kombination mit Röntgenbestrahlung supraadditive Effekte entstehen, die auf Auger- und Konversionselektronen des Tc-99m zurückzuführen sind, bedarf weiterer Experimente.
Summary
Aim: Combined internal-external radiotherapy (CIERT) requires a unified assessment of biologic radiation effects in addition to the total dose. The concept of biological effective dose (BED) was evaluated in a cell model. Methods: The thyroid NIS-positive cell line FRTL-5 was irradiated with X-ray and the radiotracer Tc-99m pertechnetate either alone or in combination. The cellular uptake of the radionuclide during the incubation time of 24 h was controlled by the presence or absence of perchlorate. Dose calculation was performed based on measured uptake values. Cell specific radiobiologic parameters were derived from dose effect curves using the colony forming assay as biological endpoint. For the combination of the radiation qualities the sequence and time difference were varied. Cell survival was compared with the prediction of the BED model. Results: The radiobiologic parameters from X-ray dose response were α = (0.22 ± 0.02) Gy-1 and β = (0.021 ± 0.001) Gy-2. The half life for repair was (1.51 ± 0.21) h. These values could also explain the dose response curves for Tc-99m-irradiation with exponential decreasing dose rate. CIERT experiments showed no significant differences in cell survival regarding sequence and irradiation break. When the radionuclide uptake was not prevented the cell survival for the combination of X-ray and Tc-99m was lower than the prediction by BED calculations. Conclusions: The validity of the BED formalism for different dose rates and radiation qualities was verified. Supraaddive effects measured in the combination of X-ray and intracellular Tc-99m might be caused by Auger and conversion electrons, however further experiments are necessary.
-
Literatur
- 1 Agostinelli S, Allison J, Amako K. et al. GEANT4-a simulation toolkit. Nucl Instrum Meth A 2003; 506: 250-303.
- 2 Allison J, Amako K, Apostolakis J. et al. Geant4 developments and applications. Ieee T Nucl Sci 2006; 53: 270-278.
- 3 Baechler S, Hobbs RF, Prideaux AR. et al. Extension of the biological effective dose to the MIRD schema and possible implications in radionuclide therapy dosimetry. Medical physics 2008; 35: 1123-1134.
- 4 Barone R, Borson-Chazot F, Valkema R. et al. Patient-specific dosimetry in predicting renal toxicity with (90)Y-DOTATOC: relevance of kidney volume and dose rate in finding a dose-effect relationship. J Nucl Med 2005; 46 (Suppl. 01) 99S-106S.
- 5 Bodey RK, Flux GD, Evans PM. Combining dosimetry for targeted radionuclide and external beam therapies using the biologically effective dose. Cancer biotherapy & radiopharmaceuticals 2003; 18: 89-97.
- 6 Cremonesi M, Ferrari M, Botta F. et al. Planning combined treatments of external beam radiation therapy and molecular radiotherapy. Cancer biotherapy & radiopharmaceuticals 2014; 29: 227-237.
- 7 Dale RG. The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy. Br J Radiol 1985; 58: 515-528.
- 8 Dale RG. Radiobiological assessment of permanent implants using tumour repopulation factors in the linear-quadratic model. Br J Radiol 1989; 62: 241-244.
- 9 Dale RG, Jones B. The assessment of RBE effects using the concept of biologically effective dose. International journal of radiation oncology, biology, physics 1999; 43: 639-645.
- 10 Freudenberg R, Runge R, Maucksch U. et al. On the dose calculation at the cellular level and its implications for the RBE of (99m)Tc and (1)(2)(3)I. Medical physics 2014; 41: 062503.
- 11 Freudenberg R, Wendisch M, Runge R. et al. Reduction in clonogenic survival of sodium-iodide symporter (NIS)-positive cells following intracellular uptake of (99m)Tc versus (188)Re. Interconsiderations. Physics in medicine and biology 2013; 58: 1529-1548.
- 12 Gustafsson J, Nilsson P, Gleisner KS. On the biologically effective dose (BED)-using convolution for calculating the effects of repair: I. Analytical considerations. Physics in medicine and biology 2013; 58: 1507-1527.
- 13 Gustafsson J, Nilsson P, Gleisner KS. On the biologically effective dose (BED)-using convolution for calculating the effects of repair: II. Numerical considerations. Physics in medicine and biology 2013; 58: 1529-1548.
- 14 Millar WT. Application of the linear-quadratic model with incomplete repair to radionuclide directed therapy. Br J Radiol 1991; 64: 242-251.
- 15 Neti PV, Howell RW. Log normal distribution of cellular uptake of radioactivity: implications for biologic responses to radiopharmaceuticals. J Nucl Med 2006; 47: 1049-1058.
- 16 Pouget JP, Santoro L, Raymond L. et al. Cell membrane is a more sensitive target than cytoplasm to dense ionization produced by auger electrons. Radiation research 2008; 170: 192-200.
- 17 Ren R, He M, Dong C. et al. Dose response of micronuclei induced by combination radiation of alpha-particles and gamma-rays in human lymphoblast cells. Mutation research 2013; 741-742 51–56..
- 18 Solanki JH, Tritt T, Pasternack JB. et al. Cellular Response to Exponentially Increasing and Decreasing Dose Rates: Implications for Treatment Planning in Targeted Radionuclide Therapy. Radiation research 2017; 188: 221-234.
- 19 Van Sande J, Massart C, Beauwens R. et al. Anion selectivity by the sodium iodide symporter. Endocrinology 2003; 144: 247-252.