Nuklearmedizin 2007; 46(06): 233-238
DOI: 10.3413/nukmed-0100
Accumulation of 18F-deoxyglucose in brain tissue
Schattauer GmbH

Specific accumulation of 18F-deoxyglucose in three-dimensional long-term cultures of human and rodent brain tissue

Spezifische Akkumulation von 18F-Deoxyglukose in organotypischen hippokampalen Hirnschnittkulturen von Menschen und Nagern
C. Hocke
1   Clinic of Nuclear Medicine
,
I. Blümcke
2   Department of Neuropathology
,
J. Romstöck
3   Department of Neurosurgery
,
O. Prante
1   Clinic of Nuclear Medicine
,
H. Stefan
4   Department of Neurology, University of Erlangen-Nürnberg, Germany
,
T. Kuwert
1   Clinic of Nuclear Medicine
,
I. Jeske
2   Department of Neuropathology
› Author Affiliations
Further Information

Publication History

Received: 27 February 2007

accepted in revised form: 30 April 2007

Publication Date:
28 December 2017 (online)

Summary

Aim: Organotypic slice cultures (OSC) of human brain specimens represent an intriguing experimental model for translational studies addressing, e.g., stem cell transplantation in neurodegenerative diseases or targeting invasion by malignant glioma ex vivo. However, long-term viability and phenomena of structural reorganization of human OSC remain to be further characterized. Here, we report the use of 18F-deoxyglucose (FDG) for evaluating the viability of brain slice preparations obtained either from postnatal rats or human hippocampal specimens. Methods: Anatomically well preserved human hippocampi obtained from epilepsy surgery and rat hippocampus slice cultures obtained from six day old Wistar rats were dissected into horizontal slices. The slices were incubated with FDG in phosphate buffered saline up to 1 h, either with or without supplementation of glucose at a concentration of 2.5 mg/ml. Radioactivity within the medium or slice cultures was measured using a gamma-counter. In addition, distribution of radioactivity was autoradiographically visualized and quantified as counts per mm2. Results: In rat hippocampal slices, FDG accumulated with 1 300 000 ± 68 000 counts/mm2, whereas the incorporation of the radioactive label in human slices was in the order of 1 500 000 ± 370 000 counts/ mm2. The elevation of glucose concentration within the medium led to a significant three-fold decrease of FDG accumulation in rat slices and to a 2.4-fold decrease in human specimens. Conclusions: FDG accumulated in organotypic brain cultures of human or rodent origin. FDG is thus suited to investigate the viability of OSC. Furthermore, these preparations open new ways to study the factors governing cerebral FDG uptake in brain tissue ex vivo.

Zusammenfassung

Ziel: Organotypische Hirnschnittkulturen (OSC) sind ein experimentelles Modell für Hirnerkrankungen. Jedoch müssen die längerfristige Lebensfähigkeit und Strukturreorganisation von menschlichen Hirnschnitten in Kultur weiter charakterisiert werden. Methoden: Wir untersuchten die Anreicherung von 18F-Deoxyglukose (FDG) in OSC aus postnatalen Ratten (n = 18)und menschlichen hippokampalen Operationspräparaten (n = 3). Die Hippokampi wurden in horizontale Scheiben geschnitten und mit FDG bis zu 1 h inkubiert. Die Verdrängung von FDG erfolgte durch Zusatz von Glukose (2,5 mg/ml). Die Radioaktivitätskonzentration im Medium und im gesamten Schnitt wurde am Gammacounter gemessen, die Verteilung der Radioaktivität autoradiographisch dargestellt. Ergebnisse: In den hippokampalen Schnitten der Ratte reicherte sich FDG in einer Stunde mit 1 300 000 ± 68 000 counts/mm2 an, wohingegen sich für die menschlichen Hirnschnitte 1 500 000 ± 370 000 counts/mm2 ergaben. Durch die Erhöhung der Glukosekonzentration im Medium kam es zu einer dreifachen Abnahme der FDG-Aufnahme im Hirnschnitt der Ratte und zu einer 2,4fachen Abnahme der FDG-Aufnahme im humanen Hirnschnitt. Schlussfolgerungen: OSC reichern FDG spezifisch an. Dieser Tracer eignet sich deshalb prinzipiell zur Kontrolle ihrer Vitalität. Ferner stellen OSC ein interessantes Ex-vivo-Modell für Faktoren dar, die die zerebrale FDG-Anreicherung beeinflussen.

 
  • References

  • 1 Biersack HJ, Bender H, Ruhlmann J. et al. Clinical PET in oncology. Rev Esp Med Nucl 2000; 19: 219-224.
  • 2 Bläser D, Maschauer S, Kuwert T. et al. In vitro studies on the signal transduction ofthyroidal uptake of 18F-FDG and 131I-Iodide. J Nucl Med 2006; 47: 1382-1388.
  • 3 Blümcke I, Wiestler OD. Gangliogliomas: an intriguing tumor entity associated with focal epilepsies. J Neuropathol Exp Neurol 2002; 61: 575-584.
  • 4 Brichta L, Hofmann Y, Hahnen E. et al. Valproic acid increases the SMN2 protein level: a well- known drug as a potential therapy for spinal muscular atrophy. Hum Mol Genet 2003; 12: 2481-2489.
  • 5 Charon Y, Laniece P, Tricoire H. Radio-Imaging for quantitative autoradiography in biology. Nucl Med Biol 1998; 25: 699-704.
  • 6 Dorr J, Roth K, Zurbuchen U. et al. Tumor-necrosis-factor-related apoptosis-inducing-ligand (TRAIL)-mediated death of neurons in living human brain tissue is inhibited by flupirtine-ma- leate. J Neuroimmunol. 2005; 167: 204-209.
  • 7 Eichenbaum H, Harris K. Toying with memory in the hippocampus. Nat Neurosci 2000; 3: 205-206.
  • 8 Elger CE. Epilepsy: disease and model to study human brain function. Brain Pathol 2002; 12: 193-198.
  • 9 Eriksson PS, Perfilieva E, Bjork-Eriksson T. et al. Neurogenesis in the adult human hippocampus. Nat Med 1998; 4: 1313-1317.
  • 10 Eyupoglu IY, Savaskan N E, Brauer A U. et al. Identification of neuronal cell death in amodel of degeneration in the hippocampus. Brain Res Brain Res Protoc 2003; 11: 1-8.
  • 11 Eyupoglu I, Hahnen E, Tränkle C. et al. Experimental therapy ofmalignant gliomas using the inhibitor of histone deacetylases MS-275. Mol CancerTher 2006; 5: 1248-1255.
  • 12 Eyupoglu IY, Hahnen E, Heckel A. et al. Malignant glioma-induced neuronal cell death in an organotypic glioma invasion model. J Neurosurg 2005; 102: 738-744.
  • 13 Grunwald F, Schrock H, Biersack HJ. et al. Changes in local cerebral glucose utilization in the awake rat during acute and chronic administration of ethanol. J Nucl Med 1993; 34: 793-798.
  • 14 Hahnen E, Eyupoglu IY, Brichta L. et al. In vitro and ex vivo evaluation of second-generation histone deacetylase inhibitors for the treatment of spinal muscular atrophy. J Neurochem 2006; 98: 193-202.
  • 15 Herholz K, Heiss WD. Positron Emission Tomography in clinicalneurology. Mol Imaging Biol 2004; 6: 239-269.
  • 16 Holsken A, Eyupoglu IY, Lueders M. et al. Ex vivo therapy ofmalignantmelanomas transplanted into organotypic brain slice cultures using inhibitors of histone deacetylases. Acta Neuropathol (Berl) 2006; 112: 205-215.
  • 17 Kuwert T, Bartenstein P, Grünwald F. et al. Klinische Wertigkeit der Positronenemissionstomographie in der Neuromediz. In: Positionspapier zu den Ergebnissen einer interdisziplinären KonsensusKonferenz. Nervenarzt 1998; 69: 1045-1060.
  • 18 Laniece P, Charon Y, Cardona A. et al. A new high resolution radioimager for the quantitative analysis of radiolabelled molecules in tissue section. J Neurosci Methods 1998; 86: 1.
  • 19 Magistretti PJ, Pellerin L. The contribution of astrocytes to the 18F-2-fluoro-2-deoxyglucose signal in PET activation studies. Mol Psychiatry 1996; 1: 445-452.
  • 20 McEwen BS, Reagan LP. Glucose transporter expression in the central nervous system: relationship to synaptic function. Eur J Pharmacol 2004; 490: 13-24.
  • 21 McKinney RA, Debanne D, Gähwiler BH. et al. Lesion-induced axonal sprouting and hyperexcit- ability in the hippocampus in vitro: implications for the genesis of posttraumatic epilepsy. Nat Med 1997; 3: 990-996.
  • 22 Nishii W, Shoda T, Matsumoto N. et al. In situ visualization of caspase-1-like activity associated with promotion ofhippocampal cell death. FEBS Lett 2002; 518: 149-153.
  • 23 Ogawa M, Watabe H, Teramoto N. et al. Understanding of cerebral energy metabolism by dynamic living brain slice imaging system with [18F]FDG. Neurosci Res 2005; 52: 357-361.
  • 24 Ohnishi T, Matsumura H, Izumoto S. et al. A novel model of glioma cell invasion using organotypic brain slice culture. Cancer Res 1998; 58: 2935-2940.
  • 25 Pauli E, Hildebrandt M, Romstock J. et al. Deficient memory acquisition in temporal lobe epilepsy is predicted by hippocampal granule cell loss. Neurology 2006; 67: 1383-1389.
  • 26 Prante O, Hocke C, Loeber S. et al. Tissue distribution of radioiodinated FAUC113: assessment of a pyrazolo(1,5-a) pyridine based dopamine D4 receptor radioligand candidate. Nuklearmedizin 2006; 45: 41-48.
  • 27 Sasaki T, Yamaguchi M, Kojima S. Demonstration of hyperaccumulation of 18F-2-fluoro-2-deoxy- D-glucose under oxygen deprivation in living brain slices using bioradiography. Synapse 2005; 55: 252-261.
  • 28 Schmidt-Hieber C, Jonas P, Bischofberger J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 2004; 429: 184-187.
  • 29 Stoppini L, Buchs PA, MullerD A. Simple method for organotypic cultures of nervous tissue. J Neurosci Meth 1991; 37: 173-182.
  • 30 van Praag H, Schinder AF, Christie BR. et al. Functional neurogenesis in the adult hippocampus. Nature 2002; 415: 1030-1034.
  • 31 Vinton AB, Carne R, Hicks RJ. et al. The extent of resection of FDG-PET hypometabolism relates to outcome of temporal lobectomy. Brain 2007; 130: 548-560.
  • 32 Yoshida S, Murata T, Omata N. et al. The effect of neuronal perturbation on the uptake of18F-2-flu- oro-2-deoxy-D-glucose in brain slices of the rat. Neurosci Res 1998; 30: 271-278.