Nuklearmedizin 2008; 47(02): 73-79
DOI: 10.3413/nukmed-0125
Originalarbeiten
Schattauer GmbH

Multi-modality imaging of uveal melanomas using combined PET/CT, high-resolution PET and MR imaging

Multimodale Bildgebung uvealer Melanome mit PET/CT, hochauflösender PET und Magnetresonanz
T. Beyer
1   Departments of Nuclear Medicine
,
U. Pietrzyk
2   Departments of Institute of Medicine, Forschungszentrum Jülich, Department of Physics, University of Wuppertal
,
C. Knoess
3   Department of Max-Planck Institute of Neurological Research, Cologne
,
S. Vollmar
3   Department of Max-Planck Institute of Neurological Research, Cologne
,
K. Wienhard
3   Department of Max-Planck Institute of Neurological Research, Cologne
,
L. Kracht
3   Department of Max-Planck Institute of Neurological Research, Cologne
,
A. Bockisch
1   Departments of Nuclear Medicine
,
S. Maderwald
4   Departments of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen
,
H. Kühl
4   Departments of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen
,
M. Fitzek
5   Department of Midwest Proton Radiotherapy Institute, Bloomington, Indiana, and Indiana University School of Medicine, Indianapolis, USA
› Author Affiliations
Further Information

Publication History

Received: 31 May 2007

accepted in revised form: 13 August 2007

Publication Date:
02 January 2018 (online)

Summary

We investigated the efficacy of combined FDG-PET/CT imaging for the diagnosis of small-size uveal melanomas and the feasibility of combining separate, high-resolution (HR) FDG-PET with MRI for its improved localization and detection. Patients, methods: 3 patients with small-size uveal melanomas (0.2–1.5 ml) were imaged on a combined whole-body PET/CT, a HR brain-PET, and a 1.5 T MRI. Static, contrast-enhanced FDG-PET/CT imaging was performed of head and torso with CT contrast enhancement. HR PET imaging was performed in dynamic mode 0–180 min post-injection of FDG. MRI imaging was performed using a high-resolution small-loop-coil placed over the eye in question with T2–3D-TSE and T1–3D-SE with 18 ml Gd-contrast. Patients had their eyes shaded during the scans. Lesion visibility on high-resolution FDGPET images was graded for confidence: 1: none, 2: suggestive, 3: clear. Mean tumour activity was calculated for summed image frames that resulted in confidence grades 2 and 3. Whole-body FDG-PET/CT images were reviewed for lesions. PET-MRI and PET/ CT-MRI images of the head were co-registered for potentially improved lesion delineation. Results: Whole-body FDG-PET/CT images of 3/3 patients were positive for uveal melanomas and negative for disseminated disease. HR FDG-PET was positive already in the early time frames. One patient exhibited rising tumour activity with increasing uptake time on FDG-PET. MRI images of the eye were co-registered successfully to FDG-PET/CT using a manual alignment approach. Conclusions: Small-size uveal melanomas can be detected with whole-body FDG-PET/CT. This feasibility study suggests the exploration of HR FDG-PET in order to provide additional diagnostic information on patients with uveal melanomas. First results support extended uptake times and high-sensitivity PET for improved tumour visibility. MRI/PET co-registration is feasible and provides correlated functional and anatomical information that may support alternative therapy regimens.

Zusammenfassung

Wir untersuchen die Tauglichkeit der kombinierten Bildgebung mit FDG-PET/CT für die Diagnose kleiner Aderhautmelanome (AHM). Ferner bewerten wir die diagnostische Wertigkeit einer Kombination aus hoch auflösender FDG-PET und MRT. Patienten, Methoden: Drei Patienten mit kleinvolumigen AHM (0,2–1,5 ml) wurden mittels FDG-PET/CT, hoch auflösender PET und 1.5 T MRT untersucht. PET/CTScans wurden kontrastverstärkt von Kopf und Rumpf separat durchgeführt. Hoch auflösende FDG-PET wurde 0–180 min p.i. dynamisch akquiriert. MRT mit T2w 3D Turbo-Spin-Echo (TSE) und T1w 3D Spin-Echo (SE) wurde im Bereich des betroffenen Auges unter Verwendung kleiner Spulen eingesetzt. Die Augen wurden während der Untersuchungen abgedeckt. Die Nachweisbarkeit der Läsionen mittels PET wurde kategorisiert: 1: nicht nachweisbar, 2: angedeutet, 3: deutlich. Die mittlere Tumoraktivität wurde für solche Messabschnitte integriert, die die Nachweisbarkeit mit den Stufen 2 und 3 ergaben. PET-MRT- und PET/CT-MRT-Bilder des Kopfes wurden koregistriert, um einen verbesserten Nachweis von Läsionen zu ermöglichen. Ergebnisse: Ganzkörper FDG-PET/CT-Bilder aller drei Patienten zeigten positive Befunde zum AHM, waren jedoch negativ für disseminierten Befall anderer Organe. Hoch aufgelöste FDG-PET zeigte positive Befunde schon zu frühen Zeitpunkten der Untersuchung. Bei einem Patienten ergab sich steigende Tumoraktivität mit vermehrter FDG-Aufnahme im Verlauf der Untersuchungszeit. MRI-Bilder des Auges konnten, gestützt auf ein interaktives Registrierungsverfahren, erfolgreich mit den FDG-PET/CT-Bildern ausgerichtet werden. Schlussfolgerungen. Kleine AHM können mittels FDG-PET/CT nachgewiesen werden. Diese Studie empfiehlt die Nutzung ausgedehnter Aufnahmezeiten und die Verwendung hochempfindlicher PET für eine bessere Nachweisbarkeit der Läsionen. Eine MRI/PET-Koregistrierung ist durchführbar und erbringt kombinierte Bildinformation, die für alternative Therapien nutzbar sein kann.

 
  • References

  • 1 Adam L-E, Zaers J, Ostertag H. et al. Performance evaluation of the whole-body PET scanner ECAT EXACT HR+ following the IEC standards. IEEE Transactions on Nuclear Sciences 1997; 44: 1172-1179.
  • 2 Beyer T, Tellmann L, Nickel I. et al. On the use of positioning aids to reduce mis-registration in the head/neck region of whole-body PET/CT studies. J Nucl Med 2005; 46: 596-602.
  • 3 Beyer T, Watson C, Townsend DW. et al. The biograph: A premium dual-modality PET/CT tomograph for clinical oncology. Electromedica 2001; 69: 120-126.
  • 4 Beyer T. Towards truly integrated hardware fusion with PET/CT. Nuklearmedizin 2005; 44: S5-S12.
  • 5 Brix G, Zaers J, Adam L-E. et al. Performance evaluation of a whole-body PET scanner using the NEMA protocol. J Nucl Med 1997; 38: 1614-1623.
  • 6 Czernin J, Allen-Auerbach M, Schelbert H. Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. J Nucl Med 2007; 48: 78S-88S.
  • 7 Diener-West M, Hawkins B, Markowitz J. et al. A review of mortality fropm choroidal melanoma. II. A meta-analysis of 5-year mortality rates following enucleation, 1966 through 1988. Arch Ophthalmol 1988; 110: 245-250.
  • 8 Egger E, Schalenbourg A, Zografos L. et al. Maximizing local tumor control and survival after proton beam radiotherapy of uveal melanoma. Int J Radiation Oncol Biol Phys 2001; 51: 138-147.
  • 9 Francken A, Fulham M, Millward M. et al. Detection of metastatic disease in patients with uveal melanoma using positron emission tomography. Eur J Surg Oncol 2006; 32: 780-784.
  • 10 Freudenberg LS, Schueler AO, Beyer T. et al. Whole-body fluorine-18 fluordeoxyglucose posi- ton emission tomography/ computed tomography (FDG-PET/CT) in staging of advanced uveal melanoma. Surv Ophthalmol 2004; 49: 537-540.
  • 11 Goitein M, Miller T. Planning proton therapy of the eye. Medical Physics 1983; 10: 275-283.
  • 12 Gragoudas E, Li W, Goitein M. et al. Evidence- based estimates of outcome in patients irradiated for intraocular melanoma. Arch Ophthalmol 2002; 120: 1665-1671.
  • 13 Hosten N, Lemke A, Sander B. et al. MR anatomy and small lesions of the eye: improved delineation with a special surface coil. Eur Radiol 1997; 7: 459-463.
  • 14 Jong Hd, Velden Fv, Kloet R. et al. Performance evaluation of the ECAT HRRT: an LSO-LYSO double layer high resolution, high sensitivity scanner. Phys Med Biol 2007; 52: 1505-1526.
  • 15 Kinahan P, Hasegawa B, Beyer T. X-ray based attenuation correction for PET/CT scanners. Semin Nucl Med 2003; 33: 166-179.
  • 16 Knoess C. Evaluation and Optimization of the High Resolution Research Tomograph (HRRT. In. Aachen: RWTH Aachen. 2004
  • 17 Lindholm P, Leskinen S, Nagren K. et al. Carbon- 11-methionine PET imaging of malignant melanoma. J Nucl Med 1995; 36: 1806-1810.
  • 18 Lucignani G, Paganelli G, Modorati G. et al. MRI, antibody-guided scintigraphy, and glucose metabolism in uveal melanoma. J Comput Assist To- mogr 1992; 16: 77-83.
  • 19 Meltzer CC, Kinahan PE, Greer PJ. et al. Comparative evaluation of MR-based partial-volume correction schemes for PET. J Nucl Med 1999; 40: 2053-2065.
  • 20 Modorati G, Lucignani G, Landoni C. et al. Glucose metabolism and pathological findings in uveal melanoma: preliminary results. Nucl Med Comm 1996; 17: 1052-1056.
  • 21 Pietrzyk U, Herholz K, Schuster A. et al. Clinical applications of registration and fusion of multi- modality brain images from PET, SPECT, CT and MRI. Eur J Radiol 1996; 21: 174-182.
  • 22 Pietrzyk U, Palm C, Beyer T. Fusion Strategies in multi-modality imaging. Proceedings for the jointly held congresses ICMP2005 and BMT2005. In: Boenick U, Bolz A. (eds9 ICMP 2005, BMT 2005: Medical Physics; 2005: 1446.
  • 23 Reske S, Kotzerke J. FDG PET for clinical use. Eur J Nucl Med 2001; 28: 1707-1723.
  • 24 Rousset O, Ma Y, Evans A. Correction for partial volume effects in PET: principle and validation. J Nucl Med 1998; 39: 904-911.
  • 25 Schäfers K, Raupach R, Beyer T. Combined 18F-FDG-PET/CT imaging of the head and neck. An approach to metal artifact correction. Nuklearmedizin 2006; 45: 219-222.
  • 26 Schulthess GKv. Cost considerations regarding an integrated CT-PET system. Eur Radiol 2000; 10: S377-S380.
  • 27 Scotto J, Fraumeni F, Lee J. Melanomas of the eye and other noncutaneous sites: epidemologic aspects. J Natl Cancer Inst 1976; 56: 489-491.
  • 28 Wienhard K, Schmand M, Casey M. et al. The ECAT HRRT: Performance and first clinical application of the new high resolution research tomograph. IEEE Transactions on Nuclear Science 2002; 49: 104-110.