Nuklearmedizin 2008; 47(06): 239-247
DOI: 10.3413/nukmed-0142
Scintigraphy in Gaucher disease
Schattauer GmbH

Is there a role for scintigraphic imaging of bone manifestations in Gaucher disease?

A review of the literatureWelche Rolle spielt die szintigraphische Bildgebung der Knochenmanifestationen bei Morbus Gaucher?Eine Literaturübersicht
P. Mikosch
1   Departments of Nuclear Medicine and Endocrinology, PET Center; State Hospital Klagenfurt, Austria
2   Departments of Internal Medicine II; State Hospital Klagenfurt, Austria
,
S. Kohlfürst
1   Departments of Nuclear Medicine and Endocrinology, PET Center; State Hospital Klagenfurt, Austria
,
H. J. Gallowitsch
1   Departments of Nuclear Medicine and Endocrinology, PET Center; State Hospital Klagenfurt, Austria
,
E. Kresnik
1   Departments of Nuclear Medicine and Endocrinology, PET Center; State Hospital Klagenfurt, Austria
,
P. Lind
1   Departments of Nuclear Medicine and Endocrinology, PET Center; State Hospital Klagenfurt, Austria
,
A. B. Mehta
3   Lysosomal Storage Disorder Unit, Department of Academic Haematology, Royal Free and University College Medical School, London, United Kingdom
,
D. A. Hughes
3   Lysosomal Storage Disorder Unit, Department of Academic Haematology, Royal Free and University College Medical School, London, United Kingdom
› Author Affiliations
Further Information

Publication History

Received: 02 August 2007

accepted in revised form: 23 April 2007

Publication Date:
07 January 2018 (online)

Summary

Gaucher disease is the most prevalent inherited, lysosomal storage disease and is caused by deficient activity of the enzyme β-glucocerebrosidase. Bone and bone marrow alterations are frequent in the most prevalent non-neuronopathic form of Gaucher disease. Imaging of bone manifestations in Gaucher disease is performed by a variety of imaging methods, conventional X-ray and MRI as the most frequently and most important ones. However, different modalities of scintigraphic imaging have also been used. This article gives an overview on scintigraphic imaging with respect to bone manifestations in Gaucher disease discussing the advantages and limitations of scintigraphic imaging in comparison to other imaging methods.

Zusammenfassung

Der Morbus Gaucher ist die häufigste genetisch determinierte lysosomale Speicherkrankheit, die durch eine eingeschränkte Aktivitat des Enzyms μ-Glucozerebrosidase bedingt ist. Bei der häufigsten nicht neuronopathischen Verlaufsform des Morbus Gaucher sind Knochen- und Knochenmarkveränderungen regelmäßig zu finden. Für die bildgebende Diagnostik der Skelettmanifestationen bei Morbus Gaucher werden verschiedene bildgebende Verfahren genutzt. Konventionelle Röntgenaufnahmen und Magnetresonanztomographie stellen aktuell die häufigsten und wichtigsten Methoden dar. Auch mit szintigraphischer Bildgebung wurde mit unterschiedlichen Tracern Skelettmanifestationen bei Morbus Gaucher diagnostiziert.

Dieser Beitrag gibt eine Übersicht der szintigraphischen Methoden, die in der Darstellung von Knochen- und Knochenmarkmanifestationen bei Morbus Gaucher eingesetzt werden. Er diskutiert die Vorteile und Limitationen der szintigraphischen Bildgebung bei dieser Erkrankung im Vergleich mit anderen bildgebenden Verfahren.

 
  • References

  • 1 Aharoni D, Krausz Y, Elstein D. et al. Tc-99m ses- tamibi bone marrow scintigraphy in Gaucher disease. Clin Nucl Med 2002; 27: 503-509.
  • 2 Allen MJ, Meyer BJ, Khokher AM. et al. Pro-inflammatory cytokines and the pathogenesis of Gaucher s disease: increased release of interleu- kin-6 and interleukin-10. Qu J Med 1997; 90: 19-25.
  • 3 Babyn PS, Ranson M, McCarvile ME. Normal bone marrow: signal characteristics and fatty conversion. MagnResonImaging ClinNAm 1998; 6: 473-495.
  • 4 Barak V, Acker M, Nisman B. et al. Cytokines in Gaucher's disease. Eur Cytokine Netw 1999; 10: 205-210.
  • 5 Bembi B, Ciana G, Mengel E. et al. Bone complications in children with Gaucher disease. Br J Radiol 2002; 75 (Suppl. 01) A137-A144.
  • 6 Bilchik TR, Heyman S. Skeletal scintigraphy of pseudo-osteomyelitis in Gaucher's disease. Two case reports and a review of the literature. Clin Nucl Med 1992; 17: 279-282.
  • 7 Blocklet D, Abramowicz M, Schoutens A. Bone, bone marrow, and MIBI scintigraphy findings in Gaucher's disease “bone crisis”. Clin Nucl Med 2001; 26: 765-769.
  • 8 Brady RO, Kanfer JN, Bradley RM. et al. Demonstration of a deficiency of glucoceribroside-cleav- ing enzyme in Gaucher's disease. J Clin Invest 1966; 45: 1112-1115.
  • 9 Braun HS, Nürnberg P, Tinschert S. Metaphyseal dysplasia: a new autosomal dominant type in a large German kindred. Am J Med Genet 2001; 101: 74-77.
  • 10 Charrow J, Dulisse B, Grabowski GA. et al. The effect of enzyme replacement therapy on bone crisis and bone pain in patients with type 1 Gaucher disease. Clin Genet 2007; 71: 205-211.
  • 11 Cheng TH, Holman BL. Radionuclide assessment of Gaucher's disease. J Nucl Med 1978; 19: 1333-1336.
  • 12 Demina A, Beutler E. Six new Gaucher disease mutations. Acta Haematol 1998; 99: 80-82.
  • 13 Dolen EG, Berdon WE, Rzal-Shapiro C. “Cold bone scans” as a sign of hemorrhagic infarcts of the spine in Gaucher's disease. Pediatr Radiol 1997; 27: 514-516.
  • 14 Farahati J, Trenn G, John-Mikolajewski V. et al. Use of various diagnostic methods in a patient withGaucher disease Type I. Clin Nucl Med 1996; 21: 619-625.
  • 15 Germain DP. Gaucher's disease: aparadigmfor interventional genetics. Clin Genet 2004; 65: 77-86.
  • 16 Hermann G, Goldblatt J, Levy RN. et al. Gaucher's disease type 1: Assessment of bone involvement by CT and scintigraphy. Am J Roentgenol 1986; 147: 943-948.
  • 17 Hermann G, Pastores GM, Abdelwahab IF. et al. Gaucher disease: assessment of skeletal involvement and therapeutic responses to enzyme replacement. Skeletal. Radiol 1997; 26: 687-696.
  • 18 Hollak CE, Evers L, Aerts JM. et al. Elevated levels of M-CSF, sCD14 and IL8 in type 1 Gaucher disease. Blood Cells Mol Dis 1997; 23: 201-212.
  • 19 Hollak CE, Pastores GM. Type I Gaucher disease. In: Zimran A. (ed). Glycolipid storage disorders. Adis Communications. 2004; Abington 17-26.
  • 20 Israel O, Jerushalm i, Front D. Scintigraphic findings in Gaucher's disease. J Nucl Med 1986; 27: 1557-1563.
  • 21 Katz K, Mechlis-Frish S, Cohen IJ. et al. Bone scans in the diagnosis of bone crisis in patients who have Gaucher disease. J Bone Joint Surg Am 1991; 73: 513-517.
  • 22 La Civita L, Mariani G, Porciello G. et al. Bone involvement in Gaucher's disease: “bone crisis” or disease complication?. Clin Exp Rheumatol 1996; 14: 195-198.
  • 23 Lorberboym M, Pastores GM, Kim CK. et al. Scintigraphic monitoring of reticuloendothelial system in patients with type 1 Gaucher disease on enzyme replacement therapy. J Nucl Med 1997; 38: 890-895.
  • 24 Maas M, Poll LW, Terk MR. Imaging and quantifying skeletal involvement in Gaucher disease. Br J Radiol 2002; 75 (Suppl. 01) A13-A24.
  • 25 Mariani G, Filocamo M, Giona F. et al. Severity of bone marrow involvement in patients with Gaucher's disease evaluated by scintigraphy with 99mTc- sestamibi. J Nucl Med 2003; 44: 1253-1262.
  • 26 Mariani G, Molea N, La Civita L. et al. Scintigraphic findings on 99mTc-MDP, 99mTc-sestamibi and 99mTc-HMPAO images in Gaucher's disease. Eur J Nucl Med 1996; 23: 466-470.
  • 27 McHugh K, Olsen 0E E, Vellodi A. Gaucher disease in children: radiology of non-central nervous manifestations. Clin Radiol 2004; 59: 117-123.
  • 28 Mistry PK, Wraight EP, Cox TM. Therapeutic delivery of proteins to macrophages: implications for treatment of Gaucher's disease. Lancet 1996; 348: 1555-1559.
  • 29 Moore SG, Dawson KL. Red and yellow marrow in the femur: age-related changes in appearance at MR imaging. Radiology 1990; 175: 219-213.
  • 30 Palestro CJ, Finn C. Indium-111-leucocyte imaging in Gaucher's disease. J Nucl Med 1993; 34: 818-820.
  • 31 Pastores G, Wallenstein S, Desnick RJ. et al. Bone density in Type 1 Gaucher disease. J Bone Min Res 1996; 11: 1801-1807.
  • 32 Pastores GM, Hermann G, Norton KI. et al. Regression of skelet al changes in type 1 Gaucher disease with enzyme replacement therapy Skeletal. Radiol 1996; 25: 485-488.
  • 33 Rademakers RP. Radiologic evaluation of gaucher bone disease. Semin Haematol 1995; 32 (Suppl. 01) 14-19.
  • 34 Rao S, Solomon N, Millier S. et al. Scintigraphic differentiation of bone infarction from osteomyelitis in children with sickle disease. J Pediatr 1985; 107: 685-688.
  • 35 Rosenthal DI, Barton NW, McKusick KA. et al. Quantitiative imaging of Gaucher disease. Radiology 1992; 185: 841-845.
  • 36 Skaggs DL, Kim SK, Greene NW. et al. Differentiation between bone infarction and acute osteomyelitis in children with sickle-cell disease with use of sequential radionuclide bone-marrow and bone scans. J Bone Joint Surg Am 2001; 83: 1810-1813.
  • 37 Umans H, Haramati N, Flusser G. The diagnostic role of gadolinium enhanced MRI in distinguishing between acute medullary bone infarct and osteomyelitis. Magn Reson Imaging 2000; 18: 255-262.
  • 38 Vom Dahl S, Poll L, Di Rocco M. et al. Evidence- based recommendations for monitoring bone disease and the response to enzyme replacement therapy in Gaucher patients. Curr Med Res Opin 2006; 22: 1045-1064.
  • 39 Weinreb N, Brady RO, Tappel AL. The lysosomal localization of spingolipid hydrolases. Biochim Biophys Acta 1968; 159: 141-146.
  • 40 Wenstrup RJ, Roca-Espiau M, Weinreb NJ. et al. Skeletal aspects of Gaucher disease: areview. Br J Radiol 2002; 75 (Suppl. 01) A2-A12.
  • 41 Zanzi I, Taylor S, Gould E. et al. Scintigraphic and magnetic resonance studies in a patient with Gaucher's disease. Clin Nucl Med 1998; 13: 491-495.