Nuklearmedizin 2008; 47(06): 255-260
DOI: 10.3413/nukmed-0176
Coronary calcium and myocardial perfusion
Schattauer GmbH

Relationship of coronary calcium and myocardial perfusion in individuals with chest pain

Assessed by integrated rubidium-82 PET-CTBeziehung zwischen koronarem Kalzium und Myokardperfusion bei Patienten mit ThoraxschmerzErfassung durch integrierte Rubidium-82-PET-CT
T. L. Y. Brown
1   Division of Nuclear Medicine, Department of Radiology and Radiological Sciences; Johns Hopkins University, Baltimore, Maryland, USA
,
J. Merrill
1   Division of Nuclear Medicine, Department of Radiology and Radiological Sciences; Johns Hopkins University, Baltimore, Maryland, USA
,
P. Hill
2   Emergency Acute Care Unit, Department of Emergency Medicine; Johns Hopkins University, Baltimore, Maryland, USA
,
F. M. Bengel
1   Division of Nuclear Medicine, Department of Radiology and Radiological Sciences; Johns Hopkins University, Baltimore, Maryland, USA
› Author Affiliations
Further Information

Publication History

Received: 19 March 2008

accepted in revised form: 07 August 2008

Publication Date:
07 January 2018 (online)

Summary

Aim: The integrated value of coronary calcium scoring added to myocardial perfusion assessment in hybrid PETCT imaging remains poorly defined. In the present study, we sought to determine the relationship between calcium burden, other risk factors, and tissue perfusion in a group of patients with chest pain and predominantly intermediate likelihood for coronary artery disease. Patients, methods: In 70 patients, coronary calcium scores (CCS) were obtained in addition to rest/dipyridamole stress 82Rb perfusion images using a GE Discovery Rx hybrid PET-CT system. From static perfusion images, summed rest, stress and difference scores (SRS, SSS, SDS) were calculated using a 20-segment model. Absolute CCS was determined according to Agatston and age-, gender-, and ethnicity-matched CCS percentiles were calculated using the MESA database. Results: SSS, SRS and SDS were abnormal (.4) in 25 (36%), 17 (24%), and 12 (17%) patients. Mean CCS according to Agatston was 180 ± 446(range 0.2122), and CCS percentile was 42 ± 43(range 0.99). Absolute CCS correlated mildly but significantly with SSS (r = 0.31, p = 0.01), while CCS percentile did not (r = 0.11, p = 0.36). Of 49 patients with normal perfusion, 25 (57%) had CCS = 0, and 8 (18%) had a CCS percentile .75th. Of 35 patients with a CCS = 0, 26 (74%) had normal perfusion. Individuals in whom review of patient records revealed events during follow-up (n = 10) had significantly higher SSS than those where no events were recorded (6.0 ± 7.2 versus 2.9 ± 3.1, p = 0.03), and there was a trend towards higher CCS percentiles (62 ± 36 versus 35 ± 43, p = 0.06). Conclusion: Coronary calcifications and myocardial tissue perfusion, as interrogated in a single PET-CT imaging session, show only partial agreement in patients with chest pain. Both tests seem to reflect different pathophysiologic components, and may be complementary for definition of individual disease patterns.

Zusammenfassung

Ziel: Die ergänzende Wertigkeit von Koronarkalk und Myokardperfusion in der Hybrid-PET-CT-Bildegbung ist schlecht definiert. In dieser Studie wurde der Zusammenhang zwischen Koronarkalk, anderen Risikofaktoren und Perfusion in einer Gruppe von Patienten mit Thoraxschmerz und intermediärer Wahrscheinlichkeit für koronare Herzerkrankung definiert. Patienten, Methoden: Bei 70 Patienten wurde unter Verwendungf eines GE Discovery Rx PET-CT Scanners ein Kalzium Score in Ergänzung zu einer Ruhe/Dipyridamol 82Rb PET Perfusionsstudie akquiriert. Summed Stress, Rest und Difference Scores (SSS, SDS, SRS) für die Myokardperfusion wurden anhand eines 20-Segment-Models berechnet. Koronarkalk wurde mittels Agatston-Score und anhand Geschlechts-, Alters- und Rassen-spezifischer Perzentilen (MEAS Datenbank) quantifiziert. Ergebnisse: SSS, SRS und SDS waren abnormal in 25 (36%), 17 (24%) und 12 (17%) Patienten. Agatston-Scores waren 180±446 (0–2122) und Kalkperzentilen waren 42±43% (0–99). Das Agatston Score korrelierte mild aber signifikant mit dem SSS (r=0.31, p=0.01), die Kalkperzentile jedoch nicht. Von 49 Patienten mit normaler Perfusion hatten 25 (57%) ein Kalkscore von 0, und 8 (18%) eine Kalkperzentile >75%. Von 35 Patienten mit einem Kalkscore von 0 hatten 26 (74%) eine normale Myokardperfusion. Patienten bei denen die Krankenaktendurchsicht ein Ereignis in der Nachbeobachtung ergab (n=10) hatten ein signifikant höheres SSS und einen Trend zu einer höheren Kalkperzentile. Schlussfolgerung: Koronarkalk und Myokardperfusion, gemessen in einer einzigen PET-CT Sitzung, zeigen nur eine teilweise übereinstimmung bei Patienten mit Thorxschmerz. Beide Tests scheinen somit verschiedene pathophysiologische Komponenten zu erfassen und scheinen komplementär zur Beschreibung individueller Krankheitsmuster.

 
  • References

  • 1 Anand DV, Lim E, Hopkins D. et al. Risk stratification in uncomplicated type 2 diabetes: prospective evaluation of the combined use of coronary artery calcium imaging and selective myocardial perfusion scintigraphy. Eur Heart J 2006; 27: 713-721.
  • 2 Bateman TM, Heller GV, McGhie AI. et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol 2006; 13: 24-33.
  • 3 Berman DS, Wong ND, Gransar H. et al. Relationship between stress-induced myocardial ischemia and atherosclerosis measured by coronary calcium tomography. J Am Coll Cardiol 2004; 44: 923-930.
  • 4 Blumenthal RS, Becker DM, Yanek LR. et al. Comparison of coronary calcium and stress myocardial perfusion imaging in apparently healthy siblings of individuals with premature coronary artery disease. Am J Cardiol 2006; 97: 328-333.
  • 5 Di Carli MF, Hachamovitch R. New technology for noninvasive evaluation of coronary artery disease. Circulation 2007; 115: 1464-1480.
  • 6 Einstein AJ, Moser KW, Thompson RC. et al. Radiation dose to patients from cardiac diagnostic imaging. Circulation 2007; 116: 1290-1305.
  • 7 Esteves FP, Sanyal R, Santana CA. et al. Potential impact of noncontrast computed tomography as gatekeeper for myocardial perfusion positron emission tomography in patients admitted to the chest pain unit. AmJCardiol 2008; 101: 149-152.
  • 8 Hachamovitch R, Berman DS, Shaw LJ. et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for riskof cardiac death and myocardial infarction. Circulation 1998; 97: 535-543.
  • 9 Imaging guidelines for nuclear cardiology procedures, part2. American Society of Nuclear Cardiology. J Nucl Cardiol 1999; 6: G47-84.
  • 10 Lautamaki R, Brown TL, Merrill J. et al. CT-based attenuation correction in 82Rb-myocardial perfusion PET-CT: incidence of misalignment and effect on regional tracer distribution. Eur J Nucl Med Mol Imaging 2008; 35: 305-310.
  • 11 Machac J. Cardiac positron emission tomography imaging. Semin Nucl Med 2005; 35: 17-36.
  • 12 Marwick TH, Shan K, Patel S. et al. Incremental value of rubidium-82 positron emission tomography for prognostic assessment of known or suspected coronary artery disease. Am J Cardiol 1997; 80: 865-870.
  • 13 McClelland RL, Chung H, Detrano R. et al. Distribution of coronary artery calcium by race, gender, and age: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 2006; 113: 30-37.
  • 14 Pirich C, Leber A, Knez A. et al. Relationofcoron- ary vasoreactivity and coronary calcification in asymptomatic subjects with a family history of premature coronary artery disease. Eur J Nucl Med Mol Imaging 2004; 31: 663-670.
  • 15 Rosman J, Shapiro M, Pandey A. et al. Lack of correlation between coronary artery calcium and myocardial perfusion imaging. J Nucl Cardiol 2006; 13: 333-337.
  • 16 Rozanski A, Gransar H, Wong ND. et al. Clinical outcomes after both coronary calcium scanning and exercise myocardial perfusion scintigraphy. J Am Coll Cardiol 2007; 49: 1352-1361.
  • 17 Rozanski A, Gransar H, Wong ND. et al. Use of coronary calcium scanning for predicting inducible myocardial ischemia: Influence of patients' clinical presentation. J Nucl Cardiol 2007; 14: 669-679.
  • 18 Schenker MP, Dorbala S, Hong EC. et al. Interrelation of coronary calcification, myocardial ischemia, and outcomes in patients with intermediate likelihood of coronary artery disease: a combined positron emission tomography/computed tomography study. Circulation 2008; 117: 1693-1700.
  • 19 Schepis T, Gaemperli O, Koepfli P. et al. Added value of coronary artery calcium score as an adjunct to gated SPECT for the evaluation of coronary artery disease in an intermediate-risk population. J Nucl Med 2007; 48: 1424-1430.
  • 20 Schuijf JD, Wijns W, Jukema JW. et al. A comparative regional analysis of coronary atherosclerosis and calcium score on multislice CT versus myocardial perfusion on SPECT. J Nucl Med 2006; 47: 1749-1755.
  • 21 Shaw LJ, Raggi P, Schisterman E. et al. Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiol- ogy 2003; 228: 826-833.
  • 22 Thompson RC, McGhie AI, Moser KW. et al. Clinical utility of coronary calcium scoring after nonischemic myocardial perfusion imaging. J Nucl Cardiol 2005; 12: 392-400.
  • 23 Yoshinaga K, Chow BJ, Williams K. et al. What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography?. J Am Coll Cardiol 2006; 48: 1029-1039.