RSS-Feed abonnieren
DOI: 10.3413/nukmed-0194
Three-phase 18F-fluorocholine PET/CT in the evaluation of prostate cancer recurrence
3-Phasen-PET/CT mit 18F-Fluor cholin zur Evaluation des ProstatakrebsrezidivsPublikationsverlauf
Received:
01. Juli 2008
accepted in revised form:
02. Oktober 2008
Publikationsdatum:
19. Januar 2018 (online)
Summary
Aim: Contribution of 3-phase 18F-fluorocholine PET/CT in suspected prostate cancer recurrence at early rise of PSA. Patients, methods: Retrospective analysis was performed in 47 patients after initial treatment with radiotherapy (n = 30) or surgery (n = 17). Following CT, 10 minutes list-mode PET acquisition was done over the prostate bed after injection of 300 MBq of 18F-fluorocholine. Three timeframes of 3 minutes each were reconstructed for analysis. All patients underwent subsequent whole body PET/CT. Delayed pelvic PET/CT was obtained in 36 patients. PET/CT was interpreted visually by two observers and SUVmax determined for suspicious lesions. Biopsies were obtained from 13 patients. Results: Biopsies confirmed the presence of cancer in 11 of 13 patients with positive PET for a total of 15 local recurrences in which average SUVmax increased during 14 minutes post injection and marginally decreased in delayed scanning. Conversely inguinal lymph nodes with mild to moderate metabolic activity on PET showed a clearly different pattern with decreasing SUVmax on dynamic images. Three-phase PET/CT contributed to the diagnostic assessment of 10 of 47 patients with biological evidence of recurrence of cancer. It notably allowed the discrimination of confounding blood pool or urinary activity from suspicious hyperactivities. PET/CT was positive in all patients with PSA ≥ 2 ng/ml (n = 34) and in 4/13 patients presenting PSA values <2 ng/ml. Conclusion: 18F-fluorocholine 3-phase PET/CT showed a progressively increasing SUVmax in biopsy confirmed cancer lesions up to 14 minutes post injection while decreasing in inguinal lymph nodes interpreted as benign. Furthermore, it was very useful in differentiating local recurrences from confounding blood pool and urinary activity.
Zusammenfassung
Ziel: Retrospektive Analyse der klinischen Wertigkeit einer 3-Phasen-Fluorcholin(FCH)-PET/CT bei 47 Patienten mit Verdacht auf frühes biochemisches Rezidiv eines Prostatakarzinoms. Patienten, Methoden: Die FCH-PET/CT wurde bei Patienten nach initialer Radiotherapie (n = 30) oder Chirurgie (n = 17) durchgeführt. Nach der CT wurden 300 MBq 18F-Fluorcholin appliziert und eine 10 Minuten dynamische PET in List-Mode-Technik über dem Prostatabett aufgenommen. Für die Analyse wurden hieraus drei statische Zeitabschnitte zu je 3 Minuten rekonstruiert. Anschließend erfolgte die Aufnahme der Ganzkörper-PET. Bei 36 Patienten wurde eine zusätzliche Spätaufnahme des Beckens aufgenommen. Die Analyse der PET/CT erfolgte visuell und anhand der SUVmax für verdächtige Befunde. Bei 13 Patienten mit positiver FCH PET/CT der Prostataloge wurden Biopsien analysiert. Ergebnisse: Histologisch bestätigt wurden 15 Lokalrezidive (4 bilateral) bei 11 von 13 FCHPET-positiven Patienten. In histologisch gesicherten Rezidiven stieg der SUVmax während der ersten 14 Minuten nach Injektion an und fiel anschließend leicht ab. Metabolisch aktive inguinale Lymphknoten zeigten im Gegensatz eine stetige Abnahme des SUVmax. Die Drei-Phasen-FCH-PET trug bei 10/47 Patienten entscheidend zur Diagnose bei, da sie die klare Abgrenzung von vaskulärer bzw. Harn-Aktivität gegenüber pathologischen Anreicherungen erlaubte. Bezüglich PSA war die FCH PET/CT bei allen Patienten ≥ 2ng/ml (n=34) positiv und bei 4/13 <2ng/ml. Schlussfolgerung: Die Drei-Phasen-FCH-PET/CT zeigte bei histologisch bestätigten Rezidiven einen initial zunehmenden SUVmax während in benignen inguinalen Lymphknoten ein stetiger Abfall zu verzeichnen war. Weiter erwies sie sich als sehr nützlich, um Lokalrezidive von vaskulärer bzw. Urinaktivität zu unterscheiden.
-
References
- 1 Albrecht S, Buchegger F, Soloviev D. et al. 11C-acetate PET in the early evaluation of prostate cancer recurrence. Eur J Nucl Med Mol Imaging 2007; 34: 185-196.
- 2 Alkhawaldeh K, Bural G, Kumar R, Alavi A. Impact of dual-time-point 18F-FDG PET imaging and partial volume correction in the assessment of solitary pulmonary nodules. Eur J Nucl Med Mol Imaging 2008; 35: 246-252.
- 3 Allal AS, Slosman DO, Kebdani T. et al. Prediction of outcome in head-and-neck cancer patients using the standardized uptake value of 2-[18F]fluoro-2-deoxy-D-glucose. Int J Radiat Oncol Biol Phys 2004; 59: 1295-1300.
- 4 Beheshti M, Vali R, Waldenberger P. et al. Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging 2008; 35: 1766-1774.
- 5 Cimitan M, Bortolus R, Morassut S. et al. [18F]fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients. Eur J Nucl Med Mol Imaging 2006; 33: 1387-1398.
- 6 Coakley FV, Teh HS, Qayyum A. et al. Endorectal MR imaging and MR spectroscopic imaging for locally recurrent prostate cancer after external beam radiation therapy: preliminary experience. Radiology 2004; 233: 441-448.
- 7 Consensus statement: guidelines for PSA following radiation therapy. American Society for Therapeutic Radiology and Oncology Consensus Panel. Int J Radiat Oncol Biol Phys 1997; 37: 1035-1041.
- 8 Costouros NG, Coakley FV, Westphalen AC. et al. Diagnosis of prostate cancer in patients with an elevated prostate-specific antigen level: role of endorectal MRI and MR spectroscopic imaging. AJR Am J Roentgenol 2007; 188: 812-816.
- 9 Cservenyak T, Drandarov K, Schubiger PA, Westera G. Automated production of [18F]fluorocholine of pharmaceutical quality. Eur J Nucl Med Mol Imaging 2003; 30: S313.
- 10 Freedland SJ, Moul JW. Prostate specific antigen recurrence after definitive therapy. J Urol 2007; 177: 1985-1991.
- 11 Freedland SJ, Sutter ME, Dorey F, Aronson WJ. Defining the ideal cutpoint for determining PSA recurrence after radical prostatectomy. Prostate-specific antigen. Urology 2003; 61: 365-369.
- 12 Fuccio C, Scarlattei M, Santi I. et al. nC-Choline PET/CT in patients treated with radical prostatectomy and PSA serum level increase: influence of PSA velocirty and PSA doubling time on PET detection rate. Eur J Nucl Med Mol Imaging 2008; 35 (Suppl 2) S156.
- 13 Giovacchini G, Picchio M, Coradeschi E. et al. Factors affecting [11C] Choline PET/CT uptake in patients with biochemical failure after radical prostatectomy. Eur J Nucl Med Mol Imaging 2008; 35 (Suppl 2) S156.
- 14 Hacker A, Jeschke S, Leeb K. et al. Detection of pelvic lymph node metastases in patients with clinically localized prostate cancer: comparison of [18F]fluorocholine positron emission tomography-computerized tomography and laparoscopic radioisotope guided sentinel lymph node dissection. J Urol 2006; 176: 2014-2018.
- 15 Harisinghani MG, Barentsz J, Hahn PF. et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. New Engl J Med 2003; 348: 2491-2499.
- 16 Horwitz EM, Thames HD, Kuban DA. et al. Definitions of biochemical failure that best predict clinical failure in patients with prostate cancer treated with external beam radiation alone: a multi-institutional pooled analysis. J Urol 2005; 173: 797-802.
- 17 Husarik DB, Miralbell R, Dubs M. et al. Evaluation of [18F]-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging 2008; 35: 253-263.
- 18 Krause BJ, Souvatzoglou M, Tuncel M. et al. The detection rate of [11C]Choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 2008; 35: 18-23.
- 19 Kwee SA, Wei H, Sesterhenn I. et al. Localization of primary prostate cancer with dual-phase 18F-fluorocholine PET. J Nucl Med 2006; 47: 262-269.
- 20 Malpica A, Matisic JP, Niekirk DV. et al. Kappa statistics to measure interrater and intrarater agreement for 1790 cervical biopsy specimens among twelve pathologists: qualitative histopathologic analysis and methodologic issues. Gynecol Oncol 2005; 99: S38-S52.
- 21 Michel C, Sibomana M, Boi A. et al. Preserving Poisson characteristics of PET data with weighted OSEM reconstruction Proc IEEE. Nuclear Science Symp and Medical Imaging Conf 1998; 2: 1323-1329.
- 22 Oehr P, Bouchelouche K. Imaging of prostate cancer. Curr Opin Oncol 2007; 19: 259-264.
- 23 Oyama N, Miller TR, Dehdashti F. et al. 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 2003; 44: 549-555.
- 24 Price DT, Coleman RE, Liao RP, Robertson CN, Polascik TJ, DeGrado TR. Comparison of [18F]fluorocholine and [18F]fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer. J Urol 2002; 168: 273-280.
- 25 Reske SN, Blumstein NM, Glatting G. [11C]choline PET/CT imaging in occult local relapse of prostate cancer after radical prostatectomy. Eur J Nucl Med Mol Imaging 2008; 35: 9-17.
- 26 Reske SN, Blumstein NM, Neumaier B. et al. Imaging prostate cancer with 11C-choline PET/CT. J Nucl Med 2006; 47: 1249-1254.
- 27 Rinnab L, Blumstein NM, Mottaghy FM. et al. 11C-choline positron-emission tomography/computed tomography and transrectal ultra-sonography for staging localized prostate cancer. BJU Int 2007; 99: 1421-1426.
- 28 Rousset OG, Rahmim A, Alavi A, Zaidi H. Strategies for partial volume correction in PET. PET Clin 2007; 2: 235-249.
- 29 Schmid DT, John H, Zweifel R. et al. Fluorocholine PET/CT in patients with prostate cancer: initial experience. Radiology 2005; 235: 623-628.
- 30 Schuster DM, Votaw JR, Nieh PT. et al. Initial experience with the radiotracer anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid with PET/CT in prostate carcinoma. J Nucl Med 2007; 48: 56-63.
- 31 Siegel C. Organ-confined prostate cancer: effect of prior transrectal biopsy on endorectal MRI and MR spectroscopic imaging. J Urol 2005; 174: 569.
- 32 Sutinen E, Nurmi M, Roivainen A. et al. Kinetics of [11C]choline uptake in prostate cancer: a PET study. Eur J Nucl Med Mol Imaging 2004; 31: 317-324.
- 33 Testa C, Schiavina R, Lodi R. et al. Prostate cancer: Sextant localization with MR imaging, MR spectroscopy, and 11C-choline PET/CT. Radiology 2007; 244: 797-806.
- 34 Vees H, Buchegger F, Albrecht S. et al. 18F-choline and/or 11C-acetate positron emission tomography: detection of residual or progressive subclinical disease at very low prostate-specific antigen values (<1 ng/mL) after radical prostatectomy. BJU Int 2007; 99: 1415-1420.
- 35 Wachter S, Tomek S, Kurtaran A. et al. 11C-acetate positron emission tomography imaging and image fusion with computed tomography and magnetic resonance imaging in patients with recurrent prostate cancer. J Clin Oncol 2006; 24: 2513-2519.
- 36 Ward JF, Moul JW. Biochemical recurrence after definitive prostate cancer therapy. Part I: defining and localizing biochemical recurrence of prostate cancer. Curr Opin Urol 2005; 15: 181-186.
- 37 Ward JF, Sebo TJ, Blute ML, Zincke H. Salvage surgery for radiorecurrent prostate cancer: contemporary outcomes. J Urol 2005; 173: 1156-1160.
- 38 Weckerman D, Dorn R, Trefz M. et al. Sentinel lymph node dissection for prostate cancer:experience with more than 1000 patients. J Urol 2007; 177: 916-920.