Nuklearmedizin 2009; 48(06): 233-242
DOI: 10.3413/nukmed-0247
Original article
Schattauer GmbH

Fluorodeoxyuridine mediated cell cycle synchronization in S-phase increases the Auger radiation cell killing with 125I-iododeoxyuridine

Fluordeoxyuridin synchronisiert Glioblastom zellen in der S-Phase und erhöht die zelltötende Wirkung der Auger-Strahlung von 125I-Ioddeoxyuridin
F. Perillo-Adamer
1   Department of Nuclear Medicine, University Hospital of Lausanne
2   Department of Radio-Oncology, University Hospital of Lausanne, Switzerland
,
M. Kosinski
1   Department of Nuclear Medicine, University Hospital of Lausanne
,
Y. M. Dupertuis
3   Unit of Nutrition, University Hospital of Geneva
,
D. Viertl
1   Department of Nuclear Medicine, University Hospital of Lausanne
,
A. Bischof Delaloye
1   Department of Nuclear Medicine, University Hospital of Lausanne
,
F. Buchegger
1   Department of Nuclear Medicine, University Hospital of Lausanne
4   Department of Nuclear Medicine, University Hospital of Geneva, Switzerland
› Author Affiliations
Further Information

Publication History

received: 09 March 2009

accepted in revised form: 11 September 2009

Publication Date:
24 January 2018 (online)

Summary

Aim: 125I-iododeoxyuridine is a potential Auger radiation therapy agent. Its incorporation in DNA of proliferating cells is enhanced by fluorodeoxyuridine. Here, we evaluated therapeutic activities of 125I-iododeoxyuridine in an optimized fluorodeoxyuridine pre-treatment inducing S-phase synchronization. Methods: After S-phase synchronization by fluorodeoxyuridine, cells were treated with 125I-iododeoxyuridine. Apoptosis analysis and S-phase synchronization were studied by flow cytometry. Cell survival was determined by colony-forming assay. Based on measured growth parameters, the number of decays per cell that induced killing was extrapolated. Results: Treatment experiments showed that 72 to 91% of synchronized cells were killed after 0.8 and 8 kBq/ml 125I-iododeoxyuridine incubation, respectively. In controls, only 8 to 38% of cells were killed by corresponding 125I-iododeoxyuridine activities alone and even increasing the activity to 80 kBq/ml gave only 42 % killing. Duplicated treatment cycles or repeated fluorodeoxyuridine pre-treatment allowed enhancing cell killing to >95 % at 8 kBq/ml 125I-iododeoxyuridine. About 50 and 160 decays per S-phase cells in controls and S-phase synchronization, respectively, were responsible for the observed cell killing at 0.8 kBq/ml radio-iododeoxyuridine. Conclusion: These data show the successful application of fluorodeoxyuridine that provided increased 125I-iododeoxyuridine Auger radiation cell killing efficacy through S-phase synchronization and high DNA incorporation of radio-iododeoxyuridine.

Zusammenfassung

Ziel: 125I-Ioddeoxyuridin ist ein potenzielles Auger-Strahlentherapeutikum, dessen Einbau in die DNA sich teilender Zellen durch Fluorde-oxyuridin (FdUrd) erhöht wird. Wir untersuchten therapeutische Konzentrationen von 125I-Ioddeoxyuridin innerhalb eines optimalen Therapieschemas von FdUrd-induzierter S-Phasen-Synchronisierung von Glioblastomzellen. Material, Methoden: Apoptose und Zellphasen wurden mittels Flusszytometrie gemessen. Die Zellüberlebensrate wurde anhand des Kolonie-Wachstumstests ermittelt. Wir haben ebenfalls unter Therapie in parallelen Experimenten die Daten ermittelt, die uns erlaubten, die Anzahl von 125I-Zerfällen zu bestimmen, welche die Zellen abtöteten. Ergebnisse: Zwischen 72 und 91% der mit FdUrd synchronisierten Zellen wurden durch 0,8 und 8 kBq/ml 125I-Ioddeoxyuridin abgetötet. Nur gerade 8 bis 38% der Kontrollzellen wurden durch 125I-Ioddeoxyuridin allein zerstört und selbst Erhöhung auf 80 kBq/ml erhöhte die zytostatische Effizienz nur unwesentlich. Verdopplung der Behandlungszyklen oder Wiederholung der FdUrd-Vorbehandlung ergab eine erhöhte Zytotoxizität auf mehr als 95% bei 8 kBq 125I-Ioddeoxyuridin. Bei 0.8 kBq/ml Radio-Ioddeoxyuridin bewirkten ungefähr 50 radioaktive Auger-Zerfälle den therapeutischen Effekt in Kontrollzellen und 160 Auger-Zerfälle denjenigen in S-Phasen-synchronisierten Zellen, gut vereinbar mit publizierten Toxizitätswerten von DNA-eingebauten Auger-Zerfällen. Schlussfolgerung: Die Resultate zeigen die erfolgreiche Anwendung von FdUrd, das die 125I-Ioddeoxyuridin-Auger-Strahleneffizienz deutlich verstärkt, vermittelt durch S-Phasen-Synchronisierung und einen gesteigerten DNA-Einbau des Radio-Iod-deoxyuridins.

 
  • References

  • 1 Behin A, Hoang-Xuan K, Carpentier AF, Delattre JY. Primary brain tumours in adults. Lancet 2003; 361: 323-331.
  • 2 Blasberg RG, Roelcke U, Weinreich R. et al. Imaging brain tumor proliferative activity with [124I]iodo-deoxyuridine. Cancer Res 2000; 60: 624-635.
  • 3 Braithwaite AW, Royds JA, Jackson P. The p53 story: layers of complexity. Carcinogenesis 2005; 26: 1161-1169.
  • 4 Brandes AA. State-of-the-art treatment of highgrade brain tumors. Semin Oncol 2003; 30: 4-9.
  • 5 Bresnick E, Thompson UB. Properties of deoxy-thymidine kinase partially purified from animal tumors. J Biol Chem 1965; 240: 3967-3974.
  • 6 Buchegger F, Perillo-Adamer F, Dupertuis YM, Bischof Delaloye A. Auger radiation targeted into DNA: a therapy perspective. Eur J Nucl Med Mol Imaging 2006; 33: 1352-1363.
  • 7 Chi KH, Wang HE, Chen FD. et al. Preclinical evaluation of locoregional delivery of radiolabeled iodo-deoxyuridine and thymidylate synthase inhibitor in a hepatoma model. J Nucl Med 2001; 42: 345-351.
  • 8 Commerford SL. Biological stability of 5-iodo-2'-deoxyuridine labelled with iodine-125 after its incorporation into the deoxyribonucleic acid of the mouse. Nature 1965; 206: 949-950.
  • 9 Dupertuis YM, Vazquez M, Mach JP. et al. Fluoro-deoxyuridine improves imaging of human glioblastoma xenografts with radiolabeled iododeoxy-uridine. Cancer Res 2001; 61: 7971-7977.
  • 10 Eidinoff ML, Cheong L, Rich MA. Incorporation of unnatural pyrimidine bases into deoxyribonucleic acid of mammalian cells. Science 1959; 129: 1550-1551.
  • 11 Foulon CF, Adelstein SJ, Kassis AI. Kit formulation for the preparation of radiolabeled iododeoxyuridine by demetallation. J Nucl Med 1996; 37: 1S-3S.
  • 12 Foulon CF, Zhang YZ, Adelstein SJ, Kassis AI. Instantaneous preparation of radiolabeled 5-iodo-2'-deoxyuridine. Appl Radiat Isot 1995; 46: 1039-1046.
  • 13 Freudenberg R, Andreeff M, Oehme L, Kotzerke J. Dosimetry of cell-monolayers in multiwell plates. Nuklearmedizin 2009; 48: 120-126.
  • 14 Garrett C, Wataya Y, Santi DV. Thymidylate synthe-tase. Catalysis of dehalogenation of 5-bromo-and 5-iodo-2'-deoxyuridylate. Biochemistry 1979; 18: 2798-2804.
  • 15 Grossman SA, Batara JF. Current management of glioblastoma multiforme. Semin Oncol 2004; 31: 635-644.
  • 16 Howell RW, Narra VR, Sastry KS, Rao DV. On the equivalent dose for Auger electron emitters. Radiat Res 1993; 134: 71-78.
  • 17 Kassis AI. The amazing world of auger electrons. Int J Radiat Biol 2004; 80: 789-803.
  • 18 Kassis AI, Adelstein SJ. Radiobiologic principles in radionuclide therapy. J Nucl Med 2005; 46 Suppl 1 4S-12S.
  • 19 Kassis AI, Dahman BA, Adelstein SJ. In vivo therapy of neoplastic meningitis with methotrexate and 5. Acta Oncol 2000; 39: 731-737.
  • 20 Kassis AI, Fayad F, Kinsey BM. et al. Radiotoxicity of 125I in mammalian cells. Radiat Res 1987; 111: 305-318.
  • 21 Kassis AI, Guptill WE, Taube RA, Adelstein SJ. Radiotoxicity of 5-[125I]iodo-2'-deoxyuridine in mammalian cells following treatment with 5-fluoro-2'-deoxyuridine. J Nucl Biol Med 1991; 35: 167-173.
  • 22 Kassis AI, Kirichian AM, Wang K. et al. Therapeutic potential of 5-[125I]iodo-2'-deoxyuridine and methotrexate in the treatment of advanced neo-plastic meningitis. Int J Radiat Biol 2004; 80: 941-946.
  • 23 Kassis AI, Sastry KS, Adelstein SJ. Kinetics of uptake, retention, and radiotoxicity of 125IUdR in mammalian cells: implications of localized energy deposition by Auger processes. Radiat Res 1987; 109: 78-89.
  • 24 Kassis AI, Van den Abbeele AD, Wen PY. et al. Specific uptake of the auger electron-emitting thymidine analogue 5-[123I/125I]iodo-2'-deoxyuridine in rat brain tumors: diagnostic and therapeutic implications in humans. Cancer Res 1990; 50: 5199-5203.
  • 25 Klecker Jr RW, Jenkins JF, Kinsella TJ. et al. Clinical pharmacology of 5-iodo-2'-deoxyuridine and 5-iodouracil and endogenous pyrimidine modulation. Clin Pharmacol Ther 1985; 38: 45-51.
  • 26 Mirimanoff RO, Gorlia T, Mason W. et al. Radiotherapy and temozolomide for newly diagnosed glioblastoma: recursive partitioning analysis of the EORTC 26981/22981-NCIC CE3 phase III randomized trial. J Clin Oncol 2006; 24: 2563-2569.
  • 27 Neshasteh-Riz A, Angerson WJ, Reeves JR. et al. Incorporation of iododeoxyuridine in multicellular glioma spheroids: implications for DNA-targeted radiotherapy using Auger electron emitters. Br J Cancer 1997; 75: 493-499.
  • 28 O'Donoghue JA, Wheldon TE. Targeted radiotherapy using Auger electron emitters. Phys Med Biol 1996; 41: 1973-1992.
  • 29 Ohgaki H, Kleihues P. Epidemiology and etiology of gliomas. Acta Neuropathol (Berl) 2005; 109: 93-108.
  • 30 Parsels LA, Zellars RC, Loney TL. et al. Prevention of fluorodeoxyuridine-induced cytotoxicity and DNA damage in HT29 colon carcinoma cells by conditional expression of wild-type p53 phenotype. Mol Pharmacol 1997; 52: 600-605.
  • 31 Perillo-Adamer F, Bischof Delaloye A, Genton CS. et al. Short fluorodeoxyuridine exposure of different human glioblastoma lines induces high-level accumulation of S-phase cells that avidly incorporate 125I-iododeoxyuridine. Eur J Nucl Med Mol Imaging 2006; 33: 613-620.
  • 32 Porschen R, Porschen W, Muhlensiepen H, Feinendegen LE. Reutilization of 125I-UdR during growth of a solid mammary carcinoma: implications for the 125I-UdR loss technique. Strahlenther Onkol 1987; 163: 723-728.
  • 33 Reske SN, Deisenhofer S, Glatting G. et al. 123I-ITdU-mediated nanoirradiation of DNA efficiently induces cell kill in HL60 leukemia cells and in doxorubicin-, beta-, or gamma-radiation-resistant cell lines. J Nucl Med 2007; 48: 1000-1007.
  • 34 Schaffland AO, Delaloye AB, Kosinski M. et al. The preparation of clinical grade 5-[123I]iodo-2'-deo-xyuridine and 5-[125I]iodo-2'-deoxyuridine with high in vitro stability and the potential for early proliferation scintigraphy. Nucl Med Commun 2004; 25: 461-468.
  • 35 Sedelnikova OA, Panyutin IG, Thierry AR, Neumann RD. Radiotoxicity of iodine-125-labeled oligo-deoxyribonucleotides in mammalian cells. J Nucl Med 1998; 39: 1412-1418.
  • 36 Sinigaglia F, Talmadge KW. Inhibition of [3H]thymidine incorporation by Mycoplasma arginini-infected cells due to enzymatic cleavage of the nucleoside. Eur J Immunol 1985; 15: 692-696.
  • 37 Stupp R, Mason WP, van den Bent MJ. et al. Radiotherapy plus concomitant and adjuvant temozolo-mide for glioblastoma. N Engl J Med 2005; 352: 987-996.
  • 38 Thames HD, Hendry JH. Fractionation in radiotherapy: Taylor and Francis. 1987: 297.
  • 39 Van Meir EG, Kikuchi T, Tada M. et al. Analysis of the p53 gene and its expression in human glioblastoma cells. Cancer Res 1994; 54: 649-652.
  • 40 Wendisch M, Drechsel J, Freudenberg R. et al. Cellular damage in vitro-Influence of ß-energy and intracellular radionuclide uptake. Nuklearmedizin 2009; 48: 208-214.
  • 41 Xiao WH, Dupertuis YM, Mermillod B. et al. Unlabelled iododeoxyuridine increases the cytotoxicity and incorporation of [125I]-iododeoxyuridine in two human glioblastoma cell lines. Nucl Med Commun 2000; 21: 947-953.
  • 42 Xue LY, Butler NJ, Makrigiorgos GM. et al. Bystander effect produced by radiolabeled tumor cells in vivo. Proc Natl Acad Sci USA 2002; 99: 13765-13770.