RSS-Feed abonnieren
DOI: 10.3413/nukmed-0253
Cellular damage in vitro
Influence of β-energy and intracellular radionuclide uptakeEinfluss der mittleren Betaenergie und der intrazellulären Radionuklidaufnahme auf die Zellschädigung in vitroPublikationsverlauf
received:
30. April 2009
accepted in revised form:
10. Juli 2009
Publikationsdatum:
22. Januar 2018 (online)
Summary
Aim: The cellular damage of ionising radiation depends on dose, physical radiation quality (e. g. LET) and intracellular radionuclide uptake. The influence of two beta emitters (188Re and 131I) on the thyroid cell line PC Cl3 was studied. Furthermore, we analysed the effect of intracellular accumulation. Methods: The thyroid cell line PC Cl3 was irradiated with 188Re-perrhenate or 131I-sodium iodide in presence or absence of perchlorate. The initial DNA-damage was measured in the comet assay as olive tail moment (OTM). The colony forming assay detects the clonogenic cell survival as surviving fraction. Additional the intracellular radionuclide uptake was quantified. Results: Dose response curves were established for irradiation with 188Re-perrhenate or 131I-iodine under various extra- and intracellular activity distribution conditions. In the presence of perchlorate DNA-damage and clonogenic cell survival for both radionuclides were comparable. In the absence of perchlorat radionuclide uptake of 1.39% (131I) and 4.14% (188Re) were measured causing twofold higher radiotoxicity. Although 131I uptake was lower than 188Re uptake the OTM values were higher und surviving fractions were lower. Conclusions: 131I, compared to 188Re, has lower mean beta energy and a higher LET, and therefore, it induced a higher DNA-damage even at lower intracellular uptake. An additional explanation for the higher radiotoxicity of 131I could be the higher dose exposition caused by crossfire through neighborhood cells.
Zusammenfassung
Ziel: Die Zellschädigung durch ionisierende Strahlung wird durch die absorbierte Dosis, strahlenphysikalische Eigenschaften (z. B. LET) sowie die intrazelluläre Radionuklidlokalisation beeinflusst. An der Schilddrüsenzelle PC Cl3 sollte der Einfluss zweier Betastrahler (188Re und 131I) mit unterschiedlicher mittlerer Betaenergie sowie der Einfluss der intrazellulären Akkumulation auf das Ausmaß des DNASchadens untersucht werden. Methoden: Die PC Cl3-Zellen wurden in An- bzw. Abwesenheit von Perchlorat mit 188Re und 131I inkubiert. Im Komet-Assay wurde die Höhe des initialen DNA-Schadens an Hand des OTM (olive tail moment) quantifiziert. Das klonogene Zell überleben wurde mit dem Koloniebildungstest durch Bestimmung der Überlebensfraktion ermittelt. Parallel zu allen Versuchen wurde die intrazelluläre Radionuklidaufnahme durch Uptake-Experimente gemessen. Ergebnisse: Dosis/Wirkungskurven für die Bestrahlung mit 188Re und 131I unter variabler extra- und intrazellulärer Verteilung der Radioaktivität wurden erstellt. Bei Inkubation mit Perchlorat waren initialer Schaden und klonogenes Überleben für 131I und 188Re vergleichbar. Ohne Perchlorat wurden zwischen 1,39% (131I) und 4,14% (188Re) der inkubierten Aktivität intrazellulär nachgewiesen, was die Radiotoxizität etwa verdoppelte. Trotz des geringeren Uptakes von 131I gegenüber 188Re konnte ein höheres OTM und eine geringere Überlebensfraktion nachgewiesen werden. Schlussfolgerungen: Der im Vergleich zu 188Re niederenergetischere Betastrahler 131I hat einen höheren LET und verursachte im Vergleich zu 188Re trotz geringerer intrazellulärer Konzentration höhere DNA-Schäden. Die höhere Radiotoxizität von 131I könnte mit einem höheren Dosiseintrag durch die Nachbarzellbestrahlung erklärt werden.
-
Literatur
- 1 Adams GE, Jameson DG. Time effects in molecular radiation biology. Radiat Environ Biophys 1980; 17: 95-113.
- 2 Barone MV, Sepe L, Melillo RM. et al. RET/PTC1 oncogene signaling in PC Cl 3 thyroid cells requires the small GTP-binding protein Rho. Oncogene 2001; 20: 6973-6982.
- 3 Beyreuther E, Dorr W, Lehnert A. et al. Relative biological effectiveness of 25 and 10 kV X-rays for the induction of chromosomal aberrations in two human mammary epithelial cell lines. Radiat Environ Biophys 2009; 48: 333-340.
- 4 Carlin S, Cunningham SH, Boyd M. et al. Experimental targeted radioiodide therapy following transfection of the sodium iodide symporter gene: effect on clonogenicity in both two-and three-dimensional models. Cancer Gene Ther 2000; 7: 1529-1536.
- 5 Dietlein M, Dressler J, Eschner W. et al. Procedure guidelines for radioiodine therapy of differentiated thyroid cancer (version 3). Nuklearmedizin 2007; 46: 213-219.
- 6 Dietlein M, Dressler J, Eschner W. et al. Procedure guideline for iodine-131 whole-body scintigraphy for differentiated thyroid cancer (version 3). Nuklearmedizin 2007; 46: 206-212.
- 7 Dikomey E, Brammer I, Johansen J. et al. Relationship between DNA double-strand breaks, cell killing, and fibrosis studied in confluent skin fibro- blasts derived from breast cancer patients. Int J Radiat Oncol Biol Phys 2000; 46: 481-490.
- 8 Dikomey E, Dahm-Daphi J, Brammer I. et al. Correlation between cellular radiosensitivity and nonrepaired double-strand breaks studied in nine mammalian cell lines. Int J Radiat Biol 1998; 73: 269-278.
- 9 Faraggi M, Gardin I, Stievenart JL. et al. Comparison of cellular and conventional dosimetry in assessing self-dose and cross-dose delivered to the cell nucleus by electron emissions of 99mTc, 123I, 111In, 67Ga and 201Tl. Eur J Nucl Med 1998; 25: 205-214.
- 10 Florent M, Godard T, Ballet JJ. et al. Detection by the comet assay of apoptosis induced in lymphoid cell lines after growth factor deprivation. Cell Biol Toxicol 1999; 15: 185-192.
- 11 Frankenberg-Schwager M. Review of repair kinetics for DNA damage induced in eukaryotic cells in vitro by ionizing radiation. Radiother Oncol 1989; 14: 307-320.
- 12 Freudenberg R, Andreeff M, Oehme L, Kotzerke J. Dosimetry of cell-monolayers in multiwell plates. Nuklearmedizin 2009; 48: 120-126.
- 13 Goddu SM, Howell RW, Rao DV. Cellular dosi- metry: absorbed fractions for monoenergetic electron and alpha particle sources and S-values for radionuclides uniformly distributed in different cell compartments. J Nucl Med 1994; 35: 303-316.
- 14 Goddu SM, Rao DV, Howell RW. Multicellular dosimetry for micrometastases: dependence of self- dose versus cross-dose to cell nuclei on type and energy of radiation and subcellular distribution of radionuclides. J Nucl Med 1994; 35: 521-530.
- 15 Haberkorn U, Henze M, Altmann A. et al. Transfer of the human NaI symporter gene enhances iodide uptake in hepatoma cells. J Nucl Med 2001; 42: 317-325.
- 16 Kiltie AE, Orton CJ, Ryan AJ. et al. A correlation between residual DNA double-strand breaks and clonogenic measurements of radiosensitivity in fibroblasts from preradiotherapy cervix cancer patients. Int J Radiat Oncol Biol Phys 1997; 39: 1137-1144.
- 17 Kotzerke J, Fenchel S, Guhlmann A. et al. Pharmacokinetics of 99mTc-pertechnetate and 188Re- perrhenate after oral administration of perchlorate: option for subsequent care after the use of liquid 188Re in a balloon catheter. Nucl Med Commun 1998; 19: 795-801.
- 18 Marx K, Moka D, Schomacker K. et al. Cell death induced by 131I in a differentiated thyroid carcinoma cell line in vitro: necrosis or apoptosis?. Nucl Med Commun 2006; 27: 353-358.
- 19 McKelvey-Martin VJ, Ho ET, McKeown SR. et al. Emerging applications of the single cell gel electrophoresis (Comet) assay. I. Management of invasive transitional cell human bladder carcinoma. II. Fluorescent in situ hybridization Comets for the identification of damaged and repaired DNA sequences in individual cells. Mutagenesis 1998; 13: 1-8.
- 20 Miller BE, Miller FR, Heppner GH. Interactions between tumor subpopulations affecting their sensitivity to the antineoplastic agents cyclo- phosphamide and methotrexate. Cancer Res 1981; 41: 4378-4381.
- 21 Moller P, Knudsen LE, Loft S, Wallin H. The comet assay as a rapid test in biomonitoring occupational exposure to DNA-damaging agents and effect of confounding factors. Cancer Epidemiol Biomarkers Prev 2000; 9: 1005-1015.
- 22 Neti PV, Howell RW. When may a nonuniform distribution of 131I be considered uniform? An experimental basis for multicellular dosimetry. J Nucl Med 2003; 44: 2019-2026.
- 23 Oehme L, Dorr W, Wust P, Kotzerke J. Influence of time-dose-relationships in therapeutic nuclear medicine applications on biological effectiveness of irradiation: consequences for dosimetry. Nuklearmedizin 2008; 47: 205-209.
- 24 Olive PL, Banath JP. The comet assay: a method to measure DNA damage in individual cells. Nat Protoc 2006; 1: 23-29.
- 25 Petrich T, Knapp WH, Potter E. Functional activity of human sodium/iodide symporter in tumor cell lines. Nuklearmedizin 2003; 42: 15-18.
- 26 Sarkaria JN, Bush C, Eady JJ. et al. Comparison between pulsed-field gel electrophoresis and the comet assay as predictive assays for radiosensitivity in fibroblasts. Radiat Res 1998; 150: 17-22.
- 27 Van Sande J, Massart C, Beauwens R. et al. Anion selectivity by the sodium iodide symporter. Endocrinology 2003; 144: 247-252.
- 28 Ward JF. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol 1988; 35: 95-125.
- 29 Willhauck MJ, Sharif Samani BR, Gildehaus FJ. et al. Application of rhenium-188 as an alternative radionuclide for treatment of prostate cancer after tumor-specific sodium iodide symporter gene expression. J Clin Endocrinol Metab 2007; 92: 4451-4458.
- 30 Wurm R, Burnet NG, Duggal N. et al. Cellular radio- sensitivity and DNA damage in primary human fibroblasts. Int J Radiat Oncol Biol Phys 1994; 30: 625-633.
- 31 Zuckier LS, Dohan O, Li Y. et al. Kinetics of perrhen- ate uptake and comparative biodistribution of per- rhenate, pertechnetate, and iodide by NaI sym- porter-expressing tissues in vivo. J Nucl Med 2004; 45: 500-507.