Nuklearmedizin 2009; 48(06): 221-226
DOI: 10.3413/nukmed-0262
Original article
Schattauer GmbH

DNA damage in lymphocytes after irradiation with 211At and 188Re

Quantification by alkaline and neutral comet assayDNA-Schäden von Lymphozyten nach Bestrahlung mit 211At und 188ReQuantifizierung mit dem alkalischen und neutralen Komet-Assay
R. Runge
1   Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden
,
M. Wendisch
1   Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden
,
G. Wunderlich
1   Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden
,
R. Freudenberg
1   Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden
,
J. Kotzerke
1   Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden
› Author Affiliations
Further Information

Publication History

received: 14 July 2009

accepted in revised form: 07 October 2009

Publication Date:
24 January 2018 (online)

Summary

Aim: Ionising radiation produces many types of DNA lesions of different complexity. High linear energy transfer (LET) types of radiation are biological more effective than low LET radiation. In the present work we applied the single cell gel electrophoreses (comet assay) to study the induction of initial DNA damage, efficiency of repair and residual DNA damage in lymphocytes after treatment with 211At and 188Re. Methods: Peripheral blood mononuclear cells (PBMC) were isolated from heparinized blood of healthy donors and irradiated with 211At and 188Re at different doses. The comet assay was performed under alkaline and neutral conditions in order to detect the initial DNA damage and its repair. The measure of damage was % tail DNA (percentage of DNA in the tail). Results: After treatment of cells with 188Re the initial DNA damage (% tail DNA) detected with the alkaline comet assay was higher than the damage measured for 211At. The neutral comet assay estimated higher tail intensities for 211At in contrast to 188Re. Compared with the complete repair (10%) after irradiation with 188Re, the radiotoxicity of alpha particles indicated reduced rejoining of DNA strand breaks (60–80% residual damage). Rejoining of DNA damage measured by the neutral comet method detected about 70% unrepaired strand breaks for 211At and 188Re. Conclusions: There are major differences between the repair of strand breaks caused by 188Re and 211At detected by the alkaline comet assay. The DNA-damage induced by the high LET Emitter 211At remains nearly unrepaired detected by both alkaline and neutral comet assay. Represented data following irradiation of lymphocytes with alpha and beta particles demonstrated higher biological effectiveness of 211At by factors of 2.0–2.5.

Zusammenfassung

Energiereiche Strahlung verursacht in Abhängigkeit von den strahlenphysikalischen Eigenschaften (linearer Energietransfer, LET) der Radionuklide Zellschäden unterschiedlicher Komplexität. DNA-Strangbrüche können mit dem Komet-Assay nachgewiesen werden. Ziel ist die Untersuchung von DNA-Schäden und deren Reparatur nach Bestrahlung mit 211At und 188Re. Methoden: Periphere mononukleäre Blutzellen wurden mit 211At oder 188Re bestrahlt. Die DNA-Schäden wurden mit dem alkalischen und neutralen Komet-Assay quantifiziert. Neben der Bestimmung von Initialschäden erfolgte die Ermittlung der residualen DNA-Strangbrüche. Ergebnisse: Im alkalischen Komet-Assay wurden nach Exposition mit 188Re höhere DNA-Schäden als nach 211At detektiert. Die Messung der initialen DNASchäden mit dem neutralen Assay ergab für 211At eine höhere Radiotoxizität als für 188Re. Das Verhältnis ESB zu DSB ist beim Beta-Emitter 188Re zur Seite der ESB verschoben. Der Vergleich der Reparaturkapazitäten im alkalischen Komet-Assay zeigte nach Bestrahlung mit 188Re eine Reparatur auf 10% der Initialschäden, während nach Exposition mit 211At 60 % – 80 % der DNA-Schäden unrepariert blieben. Die im neutralen Komet-Assay analysierte DNA-Reparatur ermittelte für 211At sowie für 188Re Residualschäden in Höhe von 70 % – 80 %. Schlussfolgerung: Mit dem neutralen Komet-Assay konnte anhand der Detektion der Initialschäden sowie der DSB-Reparatur eine höhere biologische Wirkung von 211At im Vergleich zu 188Re bestimmt werden. Die höheren Residualschäden nach DNA-Reparatur weisen auf die Existenz komplexerer Schäden nach Exposition mit 211At im Vergleich zu 188Re hin. Unter Berücksichtigung der Spezifität der Komet-Assay-Versionen ermöglicht die Kombination der Teste eine partielle Aussage zur Qualität der DNA-Schäden.

 
  • Literatur

  • 1 Collins AR, Oscoz AA, Brunborg G. et al. The comet assay: topical issues. Mutagenesis 2008; 23: 143-151.
  • 2 Dahm-Daphi J, Dikomey E, Pyttlik C. Relationship between non-reparable DNA strand breaks and cell survival studied in X-irradiated CHO, CHO K1, xrs1 and xrs5 cells. Int J Radiat Biol 1994; 65: 657-663.
  • 3 Dikomey E, Dahm-Daphi J, Brammer I. et al. Correlation between cellular radiosensitivity and nonrepaired double-strand breaks studied in nine mammalian cell lines. Int J Radiat Biol 1998; 73: 269-278.
  • 4 Freudenberg R, Andreeff M, Oehme L, Kotzerke J. Dosimetry of cell-monolayers in multiwell plates. Nuklearmedizin 2009; 48: 120-126.
  • 5 Friesen C, Glatting G, Koop B. et al. Breaking che- moresistance and radioresistance with [213Bi]anti- CD45 antibodies in leukemia cells. Cancer Res 2007; 67: 1950-1958.
  • 6 Gomolka M, Rossler U, Hornhardt S. et al. Measurement of the initial levels of DNA damage in human lymphocytes induced by 29 kV X rays (mammography X rays) relative to 220 kV X rays and gamma rays. Radiat Res 2005; 163: 510-519.
  • 7 Muller W-U. Comet Assay. In: Chromosomal Alterations: Methods, Results and Importance in Human Health. Berlin Heidelberg New York: Springer; 2007: 161-176.
  • 8 Muller WU, Bauch T, Streffer C. et al. Comet assay studies of radiation-induced DNA damage and repair in various tumour cell lines. Int J Radiat Biol 1994; 65: 315-319.
  • 9 Muller WU, Ciborovius J, Bauch T. et al. Analysis of the action of the restriction endonuclease AluI using three different comet assay protocols. Strahlenther Onkol 2004; 180: 655-664.
  • 10 Mustonen R, Bouvier G, Wolber G. et al. A comparison of gamma and neutron irradiation on Raji cells: effects on DNA damage, repair, cell cycle distribution and lethality. Mutat Res 1999; 429: 169-179.
  • 11 Oehme L, Dorr W, Wust P, Kotzerke J. Influence of time-dose-relationships in therapeutic nuclear medicine applications on biological effectiveness of irradiation: consequences for dosimetry. Nuklearmedizin 2008; 47: 205-209.
  • 12 Olive PL. The role of DNA single- and doublestrand breaks in cell killing by ionizing radiation. Radiat Res 1998; 150: S42-51.
  • 13 Olive PL. The comet assay. An overview of techniques. Methods Mol Biol 2002; 203: 179-194.
  • 14 Olive PL, Wlodek D, Banath JP. DNA double-strand breaks measured in individual cells subjected to gel electrophoresis. Cancer Res 1991; 51: 4671-4676.
  • 15 Pinto M, Prise KM, Michael BD. Double strand break rejoining after irradiation of human fibrob- lasts with X rays or alpha particles: PFGE studies and numerical models. Radiat Prot Dosimetry 2002; 99: 133-136.
  • 16 Poller F, Bauch T, Sauerwein W. et al. Comet assay study of DNA damage and repair of tumour cells following boron neutron capture irradiation with fast d(14) + Be neutrons. Int J Radiat Biol 1996; 70: 593-602.
  • 17 Powell S, McMillan TJ. DNA damage and repair following treatment with ionizing radiation. Radiother Oncol 1990; 19: 95-108.
  • 18 Rydberg B. Radiation-induced DNA damage and chromatin structure. Acta Oncol 2001; 40: 682-685.
  • 19 Rydberg B, Lobrich M, Cooper PK. Repair of clustered DNA damage caused by high LET radiation in human fibroblasts. Phys Med 1998; 14 Suppl 1 24-28.
  • 20 Speit G, Hartmann A. The comet assay: a sensitive genotoxicity test for the detection of DNA damage. Methods Mol Biol 2005; 291: 85-95.
  • 21 Stabin MG, Siegel JA. Physical models and dose factors for use in internal dose assessment. Health Phys 2003; 85: 294-310.
  • 22 Stinchcomb TG, Roeske JC. Values of “S,” <z1>, and <(z1)2> for dosimetry using alpha-particle emitters. Med Phys 1999; 26: 1960-1971.
  • 23 Ulmer AJ, Scholz W, Ernst M. et al. Isolation and subfractionation of human peripheral blood mononuclear cells (PBMC) by density gradient centrifugation on Percoll. Immunobiology 1984; 166: 238-250.
  • 24 Van der Schans GP, Timmerman AJ, Bruijnzeel PL. Detection of single-strand breaks and base damage in DNA of human white blood cells as a tool for biological dosimetry of exposure to ionizing radiation. Mil Med 2002; 167: 5-7.
  • 25 Ward JF. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol 1988; 35: 95-125.
  • 26 Wojewodzka M, Buraczewska I, Kruszewski M. A modified neutral comet assay: elimination of lysis at high temperature and validation of the assay with anti-single-stranded DNA antibody. Mutat Res 2002; 518: 9-20.