Nuklearmedizin 2010; 49(04): 129-137
DOI: 10.3413/nukmed-0275
Original article
Schattauer GmbH

Lesion concordance, image quality and artefacts in PET/CT

Results of a multicenter studyKonkordanz, Bildqualität und Artefakte im PET/CT
H. Stergar
1   Department of Nuclear Medicine, University Hospital Essen, Germany
,
B. J. Krause
2   Department of Nuclear Medicine, Technische Universität München, Germany
,
S. M. Eschmann
3   Department of Nuclear Medicine, University Hospital Tübingen, Germany
,
K. U. Juergens
4   Department of Clinical Radiology, University Hospital Münster, Germany
,
H. Kuehl
5   Department of Radiology, University Hospital Essen, Germany
,
A. C. Pfannenberg
6   Department of Radiology, University Hospital Tübingen, Germany
,
J. Stollfuss
7   Department of Radiology, Technische Universität München, Germany
,
M. Weckesser
8   Department of Nuclear Medicine, University Hospital Münster, Germany
,
A. Bockisch
1   Department of Nuclear Medicine, University Hospital Essen, Germany
› Author Affiliations
Further Information

Publication History

received: 18 September 2009

accepted in revised form: 18 May 2010

Publication Date:
24 January 2018 (online)

Summary

Aim: This study had three major objectives: 1.) to record the number of concordant (both in PET and CT) pathological lesions in different body regions/organs, 2.) to evaluate the image quality and 3.) to determine both, the quantity and the quality of artefacts in whole body FDG PET/CT scans. Patients, methods: Routine whole body scans of 353 patients referred to FDG-PET/ CT exams at 4 university hospitals were employed. All potentially malignant lesions in 13 different body regions/organs were classified as either concordant or suspicious in FDG-PET or CT only. In the latter case the diagnostic relevance of this disparity was judged. The image quality in PET and CT was rated as a whole and separately in 5 different body regions. Furthermore we investigated the frequency and site of artefacts caused by metal implants and oral or intravenous contrast media as well as the subjective co-registration quality (in 4 body regions) and the diagnostic impact of such artefacts or misalignment. In addition, the readers rated the diagnostic gain of adding the information from the other tomographic method. Results: In total 1941 lesions (5.5 per patient) were identified, 1094 (56%) out of which were concordant. 602 (71%) out of the 847 remaining lesions were detected only with CT, 245 (29%) were only PET-positive. As expected, CT particularly depicted the majority of lesions in the lungs and abdominal organs. However, the diagnostic relevance was greater with PET-only positive lesions. Most of the PET/CT scans were performed with full diagnostic CT including administration of oral and intravenous contrast media (> 80%). The image quality in PET and CT was rated excellent. Artefacts occurred in more than 60% of the scans and were mainly due to (dental) metal implants and contrast agent. Nevertheless there was almost no impact on diagnostic confidence if reading of the non attenuation corrected PET was included. The co-registration quality in general was also rated as excellent. Misalignment mostly occurred due to patient motion and breathing and led to diagnostic challenges in about 4% of all exams. The diagnostic gain of adding PET to a CT investigation was rated higher than vice versa. Conclusions: As the image quality in both PET and CT was more than satisfying, CT-artefacts almost never led to diagnostic uncertainties and serious misalignment rarely occurred, PET/CT can be considered as suitable for routine use and may replace single PET- and CT-scans. However, additional reading of the non attenuation corrected PET is mandatory to assure best possible diagnostic confidence in PET. Since approximately half of all lesions found in PET/CT were not concordant, at least in a setting with a diagnostic CT the exams need to be reported by both a nuclear medicine physician and a radiologist in consensus.

Zusammenfassung

Ziel: Diese multizentrische Studie hatte drei Hauptziele: 1.) Die Anzahl in PET und CT konkordanter bzw. diskordanter pathologischer Läsionen und ihre diagnostische Relevanz in unterschiedlichen Körperregionen/Organen zu erfassen, 2.) die Bildqualität zu eruieren und 3.) die Quantität und Qualität von Artefakten in der Ganzkörper-FDG-PET/CT zu bestimmen. Patienten, Methoden: Es wurden an vier Universitätskliniken routinemäßig durchgeführte Ganzkörper-FDG-PET/CT-Untersuchungen von 353 Patienten ausgewertet. Alle potenziell suspekten Läsionen in 13 Körperregionen/Organen wurden als entweder konkordant oder als lediglich in der FDG-PET oder CT auffällig klassifiziert. Im Fall einer Diskordanz wurde deren diagnostische Relevanz eingeschätzt. Die Bildqualität in der PET und CT wurde als Ganzes sowie in 5 unterschiedlichen Körperregionen bewertet. Außerdem untersuchten wir die Häufigkeit und Lokalisation von Artefakten durch Metallimplantate und orale bzw. intravenöse Kontrastmittel, die subjektive Koregistrierungsqualität (in 4 Körperregionen) sowie die klinisch diagnostische Wertigkeit von Artefakten und Missregistrierungen. Zusätzlich wurde der globale diagnostische Zugewinn durch die Hinzunahme der jeweils anderen tomographischen Methode eingeschätzt. Ergebnisse: Inswurden 1941 Läsionen (5,5 pro Patient) identifiziert, von denen 1094 (56%) konkordant waren. 602 (71%) der verbleibenden 847 diskordanten Läsionen waren nur in der CT auffällig, 245 (29%) waren nur PET-positiv. Wie erwartet fand sich ein Großteil der nur CTpositiven Befunde in der Lunge und den Bauchorganen. Die diagnostische Relevanz war höher bei rein PET-positiven Läsionen. Die Mehrheit der Untersuchungen erfolgte unter Verwendung von oralem und intravenösem Kontrastmittel (> 80%). Die Bildqualität in PET und CT wurde als sehr gut beurteilt. Bei über 60% der Untersuchungen waren Artefakte hauptsächlich durch (dentale) Metallimplantate und intravenöse Kontrastmittel zu beobachten. Jedoch hatten diese fast keinen Einfluss auf die diagnostische Sicherheit, wenn das nicht schwächungskorrigierte PET in die Befundung eingeschlossen wurde. Die Koregistrierungsqualität wurde ebenfalls als sehr gut befunden. Missregistrierungen waren zumeist durch Patientenbewegung bzw. Atmung bedingt und führten in etwa 4% der Fälle zu diagnostischen Herausforderungen. Der diagnostische Zugewinn durch die Hinzunahme der PET-Information zu der CT wurde höher bewertet als umgekehrt. Schlussfolgerungen: Da die Bildqualität mehr als zufrieden stellend war, CT-Artefakte fast nie zu diagnostischen Unsicherheiten führten und Missregistrierungen nur selten auftraten, kann die PET/CT nicht nur als für die klinische Routine geeignet angesehen werden, sondern vermag die alleinige PET und CT zu ersetzen. Die Durchsicht des nicht schwächungskorrigierten PET ist zwingend notwendig um eine höchstmögliche diagnostische Sicherheit zu gewährleisten. Da knapp die Hälfte der detektierten Läsionen diskordant waren, muss die Beurteilung einer PET/CT unter Verwendung eines diagnostischen CT im Konsens durch Nuklearmediziner und Radiologen erfolgen.

 
  • References

  • 1 Alien-Auerbach M, Yeom K, Park J. et al. Standard PET/CT of the chest during shallow breathing is inadequate for comprehensive staging of lung cancer. J Nucl Med 2006; 47: 298-301.
  • 2 An YS, Sheen SS, Oh YJ. et al. Nonionic intravenous contrast agent does not cause clinically significant artifacts to 18F-FDG PET/CT in patients with lung cancer. Ann Nucl Med 2007; 21: 585-592.
  • 3 Antoch G, Freudenberg LS, Egelhof T. et al. Focal tracer uptake: a potential artifact in contrast-enhanced dual-modality PET/CT scans. J Nucl Med 2002; 43: 1339-1342.
  • 4 Antoch G, Kuehl H, Kanja J. et al. Dual-modality PET/CT scanning with negative oral contrast agent to avoid artifacts: introduction and evaluation. Radiology 2004; 230: 879-885.
  • 5 Antoch G, Saoudi N, Kuehl H. et al. Accuracy of whole-body dual-modality fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: comparison with CT and PET. J Clin Oncol 2004; 22: 4357-4368.
  • 6 Bar-Shalom R, Yefremov N, Guralnik L. et al. Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient management. J Nucl Med 2003; 44: 1200-1209.
  • 7 Berthelsen AK, Holm S, Loft A. et al. PET/CT with intravenous contrast can be used for PET attenuation correction in cancer patients. Eur J Nucl Med Mol Imaging 2005; 32: 1167-1175.
  • 8 Beyer T, Antoch G, Blodgett T. et al. Dual-modality PET/CT imaging: the effect of respiratory motion on combined image quality in clinical oncology. Eur J Nucl Med Mol Imaging 2003; 30: 588-596.
  • 9 Beyer T, Rosenbaum S, Veit P. et al. Respiration artifacts in whole-body 18F-FDG PET/CT studies with combined PET/CT tomographs employing spiral CT technology with 1 to 16 detector rows. Eur J Nucl Med Mol Imaging 2005; 32: 1429-1439.
  • 10 Beyer T, Townsend DW, Brun T. et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000; 41: 1369-1379.
  • 11 Beyer T, Weigert M, Quick HH. et al. MR-based attenuation correction for torso-PET/MR imaging: pitfalls in mapping MR to CT data. Eur J Nucl Med Mol Imaging 2008; 35: 1142-1146.
  • 12 Blake MA, Slattery JM, Kalra MK. et al. Adrenal lesions: characterization with fused PET/CT image in patients with proved or suspected malignancy – initial experience. Radiology 2006; 238: 970-977.
  • 13 Branstetter 4th BF, Blodgett TM, Zimmer LA. et al. Head and neck malignancy: is PET/CT more accurate than PET or CT alone?. Radiology 2005; 235: 580-586.
  • 14 Bruzzi JF, Truong MT, Marom EM. et al. Incidental findings on integrated PET/CT that do not accumulate 18F-FDG. AJR Am J Roentgenol 2006; 187: 1116-1123.
  • 15 Castellucci P, Perrone AM, Picchio M. et al. Diagnostic accuracy of 18F-FDG PET/CT in characterizing ovarian lesions and staging ovarian cancer: correlation with transvaginal ultrasonography, computed tomography, and histology. Nucl Med Commun 2007; 28: 589-595.
  • 16 Chua SC, Groves AM, Kayani I. et al. The impact of 18F-FDG PET/CT in patients with liver metastases. Eur J Nucl Med Mol Imaging 2007; 34: 1906-1914.
  • 17 Cohade C, Osman M, Nakamoto Y. et al. Initial experience with oral contrast in PET/CT: phantom and clinical studies. J Nucl Med 2003; 44: 412-416.
  • 18 El Naqa I, Low DA, Bradley JD. et al. Deblurring of breathing motion artifacts in thoracic PET images by deconvolution methods. Med Phys 2006; 33: 3587-3600.
  • 19 Farma JM, Santillan AA, Melis M. et al. PET/CT fusion scan enhances CT staging in patients with pancreatic neoplasms. Ann Surg Oncol 2008; 15: 2465-2471.
  • 20 Fletcher JW, Kymes SM, Gould M. et al. VA SNAP Cooperative Studies Group: A comparison of the diagnostic accuracy of 18F-FDG PET and CT in the characterization of solitary pulmonary nodules. J Nucl Med 2008; 49: 179-185.
  • 21 Goerres GW, Hany TF, Kamel E. et al. Head and neck imaging with PET and PET/CT: artefacts from dental metallic implants. Eur J Nucl Med Mol Imaging 2002; 29: 367-370.
  • 22 Goerres GW, Schmid DT, Eyrich GK. Do hardware artefacts influence the performance of head and neck PET scans in patients with oral cavity squamous cell cancer?. Dentomaxillofac Radiol 2003; 32: 365-371.
  • 23 Groves AM, Kayani I, Dickson JC. et al. Oral contrast medium in PET/CT: should you or shouldn't you?. Eur J Nucl Med Mol Imaging 2005; 32: 1160-1166.
  • 24 Halpern BS, Dahlbom M, Waldherr C. et al. Cardiac pacemakers and central venous lines can induce focal artifacts on CT-corrected PET images. J Nucl Med 2004; 45: 290-293.
  • 25 Hillner BE, Siegel BA, Liu D. et al. Impact of positron emission tomography/computed tomography and positron emission tomography (PET) alone on expected management of patients with cancer: initial results from the National Oncologic PET Registry. J Clin Oncol 2008; 26: 2155-2161.
  • 26 Ingui CJ, Shah NP, Oates ME. Endocrine neoplasm scintigraphy: added value of fusing SPECT/CT images compared with traditional side-by-side analysis. Clin Nucl Med 2006; 31: 665-672.
  • 27 Jeong SY, Lee KS, Shin KM. et al. Efficacy of PET/CT in the characterization of solid or partly solid solitary pulmonary nodules. Lung Cancer 2008; 61: 186-194.
  • 28 Judenhofer MS, Catana C, Swann BK. et al. PET/MR images acquired with a compact MR-compatible PET detector in a 7-T magnet. Radiology 2007; 244: 807-814.
  • 29 Juergens KU, Oei ML, Weckesser M. et al. Whole-body imaging of oncologic patients using 16-channel PET/CT. Evaluation of an i.v. contrast enhanced MDCT protocol. Nuklearmedizin 2008; 47: 30-36.
  • 30 Kamel EM, Burger C, Buck A. et al. Impact of metallic dental implants on CT-based attenuation correction in a combined PET/CT scanner. Eur Radiol 2003; 13: 724-728.
  • 31 Kim JH, Czernin J, Allen-Auerbach MS. et al. Comparison between 18F-FDG PET, in-line PET/CT, and software fusion for restaging of recurrent colorectal cancer. J Nucl Med 2005; 46: 587-595.
  • 32 Kitajima K, Murakami K, Yamasaki E. et al. Performance of integrated FDG-PET/contrast-enhanced CT in the diagnosis of recurrent ovarian cancer: comparison with integrated FDG-PET/non-contrast-enhanced CT and enhanced CT. Eur J Nucl Med Mol Imaging 2008; 35: 1439-1448.
  • 33 La Fougere C, Pflüger T, Schneider V. et al. Restaging of patients with lymphoma. Comparison of low dose CT (20 mAs) with contrast enhanced diagnostic CT in combined [18F]-FDG PET/CT. Nuklearmedizin 2008; 47: 37-42.
  • 34 Laymon CM, Ziolko SK, Becker CR. et al. Registration-based method for determining relative PET/MR left-right image orientation. Neuroimage 2008; 40: 213-216.
  • 35 Metser U, Golan O, Levine CD. et al. Tumor lesion detection: when is integrated positron emission tomography/computed tomography more accurate than side-by-side interpretation of positron emission tomography and computed tomography?. J Comput Assist Tomogr 2005; 29: 554-559.
  • 36 Morimoto T, Tateishi U, Maeda T. et al. Nodal status of malignant lymphoma in pelvic and retroperitoneal lymphatic pathways: Comparison of integrated PET/CT with or without contrast enhancement. Eur J Radiol 2008; 67: 508-513.
  • 37 O JH Yoo IeR, Kim SH. et al. Clinical significance of small pulmonary nodules with little or no 18F-FDG uptake on PET/CT images of patients with non-thoracic malignancies. J Nucl Med 2007; 48: 15-21.
  • 38 Paskeviciute B, Bölling T, Brinkmann M. et al. Impact of 18F-FDG-PET/CT on staging and irradiation of patients with locally advanced rectal cancer. Strahlenther Onkol 2009; 185: 260-265.
  • 39 Pauls S, Buck AK, Halter G. et al. Performance of integrated FDG-PET/CT for differentiating benign and malignant lung lesions – results from a large prospective clinical trial. Mol Imaging Biol 2008; 10: 121-128.
  • 40 Pevsner A, Nehmeh SA, Humm JL. et al. Effect of motion on tracer activity determination in CT attenuation corrected PET images: a lung phantom study. Med Phys 2005; 32: 2358-2362.
  • 41 Pfannenberg AC, Aschoff P, Brechtel K. et al. Value of contrast-enhanced multiphase CT in combined PET/CT protocols for oncological imaging. Br J Radiol 2007; 80: 437-445.
  • 42 Rehfeld NS, Heismann BJ, Kupferschläger J. et al. Single and dual energy attenuation correction in PET/CT in the presence of iodine based contrast agents. Med Phys 2008; 35: 1959-1969.
  • 43 Reinartz P, Wieres FJ, Schneider W. et al. Side-by-side reading of PET and CT scans in oncology: which patients might profit from integrated PET/CT?. Eur J Nucl Med Mol Imaging 2004; 31: 1456-1461.
  • 44 Rodríguez-Vigil B, Gómez-León N, Pinilla I. et al. PET/CT in lymphoma: prospective study of enhanced full-dose PET/CT versus unenhanced low-dose PET/CT. J Nucl Med 2006; 47: 1643-1648.
  • 45 Schäfers KP, Raupach R, Beyer T. Combined 18F-FDG-PET/CT imaging of the head and neck. An approach to metal artifact correction. Nuklearmedizin 2006; 45: 219-222.
  • 46 Schick V, Franzius C, Beyna T. et al. Diagnostic impact of 18F-FDG PET-CT evaluating solid pancreatic lesions versus endosonography, endoscopic retrograde cholangio-pancreatography with intraductal ultrasonography and abdominal ultrasound. Eur J Nucl Med Mol Imaging 2008; 35: 1775-1785.
  • 47 Stergar H, Bockisch A, Eschmann SM. et al. Influence of PET/CT-introduction on PET scanning frequency and indications. Results of a multicenter study. Nuklearmedizin 2007; 46: 57-64.
  • 48 Vogel WV, van Dalen JA, Wiering B. et al. Evaluation of image registration in PET/CT of the liver and recommendations for optimized imaging. J Nucl Med 2007; 48: 910-919.
  • 49 Wallowy P, Diener J, Grünwald F, Kovács A. 18F-FDG PET for detecting metastases and synchronous primary malignancies in patients with oral and oropharyngeal cancer. Nuklearmedizin 2009; 48: 192-199.
  • 50 Wolz G, Nömayr A, Hothorn T. et al. Anatomical accuracy of interactive and automated rigid registration between X-ray CT and FDG-PET. Nuklearmedizin 2007; 46: 43-48.
  • 51 Yau YY, Chan WS, Tam YM. et al. Application of intravenous contrast in PET/CT: does it really introduce significant attenuation correction error?. J Nucl Med 2005; 46: 283-291.
  • 52 Yeung HW, Schöder H, Smith A. et al. Clinical value of combined positron emission tomography/computed tomography imaging in the interpretation of 2-deoxy-2-[18F]fluoro-D-glucose-positron emission tomography studies in cancer patients. Mol Imaging Biol 2005; 7: 229-235.