Methods Inf Med 2010; 49(06): 618-624
DOI: 10.3414/ME09-02-0060
Special Topic – Original Articles
Schattauer GmbH

Blinded Sample Size Reestimation with Negative Binomial Counts in Superiority and Non-inferiority Trials

T. Friede
1   Abteilung Medizinische Statistik, Universitätsmedizin Göttingen, Göttingen, Germany
,
H. Schmidli
2   Statistical Methodology, Novartis Pharma AG, Basel, Switzerland
› Author Affiliations
Further Information

Publication History

received: 17 December 2009

accepted: 11 May 2010

Publication Date:
18 January 2018 (online)

Zoom Image

Summary

Background: In the planning of clinical trials with count outcomes such as the number of exacerbations in chronic obstructive pulmonary disease (COPD) often considerable uncertainty exists with regard to the overall event rate and the level of overdispersion which are both crucial for sample size calculations.

Objectives: To develop a sample size reestimation strategy that maintains the blinding of the trial, controls the type I error rate and is robust against misspecification of the nuisance parameters in the planning phase in that the actual power is close to the target.

Methods: The operation characteristics of the developed sample size reestimation procedure are investigated in a Monte Carlo simulation study.

Results: Estimators of the overall event rate and the overdispersion parameter that do not require unblinding can be used to effectively adjust the sample size without inflating the type I error rate while providing power values close to the target.

Conclusions: If only little information is available regarding the size of the overall event rate and the overdispersion parameter in the design phase of a trial, we recommend the use of a design with sample size reestimation as the one suggested here. Trials in COPD are expected to benefit from the proposed sample size reestimation strategy.