Methods Inf Med 2014; 53(02): 121-136
DOI: 10.3414/ME13-01-0047
Original Articles
Schattauer GmbH

A Decision Support System for the Treatment of Patients with Ventricular Assist Device Support

E. C. Karvounis
1   Biomedical Research Institute-FORTH, Ioannina, Greece
2   Unit of Medical Technology and Intelligent Information Systems, Dept. of Material Science and Engineering, University of Ioannina, Ioannina, Greece
,
M. G. Tsipouras
1   Biomedical Research Institute-FORTH, Ioannina, Greece
2   Unit of Medical Technology and Intelligent Information Systems, Dept. of Material Science and Engineering, University of Ioannina, Ioannina, Greece
,
A. T. Tzallas
1   Biomedical Research Institute-FORTH, Ioannina, Greece
2   Unit of Medical Technology and Intelligent Information Systems, Dept. of Material Science and Engineering, University of Ioannina, Ioannina, Greece
,
N. S. Katertsidis
1   Biomedical Research Institute-FORTH, Ioannina, Greece
2   Unit of Medical Technology and Intelligent Information Systems, Dept. of Material Science and Engineering, University of Ioannina, Ioannina, Greece
,
K. Stefanou
1   Biomedical Research Institute-FORTH, Ioannina, Greece
2   Unit of Medical Technology and Intelligent Information Systems, Dept. of Material Science and Engineering, University of Ioannina, Ioannina, Greece
,
Y. Goletsis
1   Biomedical Research Institute-FORTH, Ioannina, Greece
3   Department of Economics, University of Ioannina, Ioannina, Greece
,
M. Frigerio
4   Cardiology 2 – Heart Failure and Transplantation Division, “A. De Gasperis” Cardiothoracic and Vascular Department, Niguarda Ca’ Granda Hospital, Milan, Italy
,
A. Verde
4   Cardiology 2 – Heart Failure and Transplantation Division, “A. De Gasperis” Cardiothoracic and Vascular Department, Niguarda Ca’ Granda Hospital, Milan, Italy
,
R. Caruso
5   CNR Institute of Clinical Physiology, Pisa, Italy
,
B. Meyns
6   Department of Cardiac Surgery, University Hospital Leuven, Leuven, Belgium
,
J. Terrovitis
7   3rd Cardiology Department, University of Athens, School of Medicine, Athens, Greece
,
M. G. Trivella
5   CNR Institute of Clinical Physiology, Pisa, Italy
,
D. I. Fotiadis
1   Biomedical Research Institute-FORTH, Ioannina, Greece
2   Unit of Medical Technology and Intelligent Information Systems, Dept. of Material Science and Engineering, University of Ioannina, Ioannina, Greece
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received: 29. April 2013

accepted: 01. Januar 2014

Publikationsdatum:
20. Januar 2018 (online)

Summary

Background: Heart failure (HF) is affecting millions of people every year and it is characterized by impaired ventricular performance, exercise intolerance and shortened life expectancy. Despite significant advancements in drug therapy, mortality of the disease remains excessively high, as heart transplant remains the gold standard treatment for end-stage HF when no contraindications subsist. Traditionally, implanted Ventricular Assist Devices (VADs) have been employed in order to provide circulatory support to patients who cannot survive the waiting time to transplantation, reducing the workload imposed on the heart. In many cases that process could recover its contractility performance.

Objectives: The SensorART platform focuses on the management and remote treatment of patients suffering from HF. It provides an inter-operable, extendable and VAD-independent solution, which incorporates various hardware and software components in a holistic approach, in order to improve the quality of the patients’ treatment and the workflow of the specialists. This paper focuses on the description and analysis of Specialist’s Decision Support System (SDSS), an innovative component of the SensorART platform.

Methods: The SDSS is a Web-based tool that assists specialists on designing the therapy plan for their patients before and after VAD implantation, analyzing patients’ data, extracting new knowledge, and making informative decisions.

Results: SDSS offers support to medical and VAD experts through the different phases of VAD therapy, incorporating several tools covering all related fields; Statistics, Association Rules, Monitoring, Treatment, Weaning, Speed and Suction Detection.

Conclusions: SDSS and its modules have been tested in a number of patients and the results are encouraging.

 
  • References

  • 1 Dickstein K, Cohen-Solal A, Filippatos G, McMurray JJ, Ponikowski P, Poole-Wilson PA. et al ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. 2008 the Task Force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur J Heart Failure 2008; 10: 933-989.
  • 2 McMurray JJ, Pfeffer MA. Heart failure. Lancet 2005; 365 9474 1877-1889.
  • 3 Karvounis EC, Katertsidis NS, Exarchos TP, Fotiadis DI. An intelligent Decision Support System for the treatment of patients receiving Ventricular Assist Device (VAD) support. Proceedings of the 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC ’11); 2011 Aug 30- Sep 3; Boston, USA 2011; pp 8295-8298.
  • 4 Karvounis EC, Stefanou K, Exarchos TP, Tzallas AT, Tsipouras MG, Fotiadis DI. A Treatment Decision Support System for patients receiving Ventricular Assist Device (VAD) therapy. Proceedings of the IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI); 2012 Jan.. 5-7. Hong Kong: Shenzhen; 2012. pp 695-698.
  • 5 Kawazoe Y, Ohe K. An ontology-based mediator of clinical information for decision support systems: a prototype of a clinical alert system for prescription. Methods Inf Med 2008; 47 (06) 549-559.
  • 6 Pfeiffer KP. Future Development of Medical Informatics from the Viewpoint of Health Telematics. Methods Inf Med 2009; 48 (01) 55-61.
  • 7 Agrawal R, Srikant R. Fast algorithms for mining association rules in large databases. Proceedings of the 20th International Conference on Very Large Data Bases; 1994 Sept.. 12-15. Santiago: Chile; 1994. pp 487-499.
  • 8 Doddi S, Marathe A, Ravi SS, Torney DC. Discovery of association rules in medical data. Med Inform Internet Med 2001; 26: 25-33.
  • 9 Hu R. Medical Data Mining Based on Association Rules. Computer and Information Science 2010; 3 (04) 104.
  • 10 Sriraam N, Natasha V, Kaur H. Data mining approaches for kidney dialysis treatment. J Mech Med Biol 2006; 6: 109-121.
  • 11 Immamura T, Matsumoto S, Kanagawa Y, Tajima B, Matsuya S, Furue M. et al A technique for identifying three diagnostic findings using association analysis. Med Biol Eng Comput 2007; 45: 51-59.
  • 12 Lee DG, Ryu KS, Bashir M, Bae J-W. Ryu KH. Discovering Medical Knowledge using Association Rule Mining in Young Adults with Acute Myocardial Infarction. J Med Syst 2013; 37: 9896
  • 13 Aaronson KD, Schwartz JS, Chen TM, Wong KL, Goin JE, Mancini DM. Development and prospective validation of a clinical index to predict survival in ambulatory patients referred for cardiac transplant evaluation. Circulation 1997; 95: 2660-2667.
  • 14 Levy WC, Mozaffarian D, Linker DT, Sutradhar SC, Anker SD, Cropp AB. et al The Seattle Heart Failure Model: prediction of survival in heart failure. Circulation 2006; 113: 1424-1433.
  • 15 Levy WC, Mozaffarian D, Linker DT, Farrar DJ, Miller LW. Can the Seattle heart failure model be used to risk-stratify heart failure patients for potential left ventricular assist device therapy?. J Heart Lung Transplant 2009; 28: 231-236.
  • 16 Kirklin JK, Naftel DC, Kormos RL, Stevenson LW, Pagani FD, Miller MA. et al Second INTERMACS annual report: More than 1,000 primary left ventricular assist device implants. J Heart Lung Transplant 2010; 29: 1-10.
  • 17 Holman WL, Pae WE, Teutenberg JJ, Acker MA, Naftel DC, Sun BC. et al INTERMACS: interval analysis of registry data. J Am Coll Surg 2009; 208: 755-761.
  • 18 Stevenson LW, Pagani FD, Young JB, Jessup M, Miller L. et al INTERMACS profiles of advanced heart failure: the current picture. J Heart Lung Transplant 2009; 28: 535-541.
  • 19 Matthews JC, Koelling TM, Pagani FD, Aaronson KD. Model for End-Stage Liver Disease Score Predicts Left Ventricular Assist Device Operative Transfusion Requirements, Morbidity, and Mortality. Circulation 2010; 121: 214-220.
  • 20 Farrar DJ. Preoperative predictors of survival in patients with Thoratec ventricular assist devices as a bridge to heart transplantation. Thoratec Ventricular Assist Device Principal Investigators. J Heart Lung Transplant 1994; 13 01 Pt (01) 93-100.
  • 21 Oz MC, Goldstein DJ, Pepino P, Weinberg AD, Thompson SM, Catanese KA. et al Screening scale predicts patients successfully receiving long-term implantable left ventricular assist devices. Circulation 1994; 92: 69-73.
  • 22 Rao V, Oz MC, Flannery MA, Catanese KA, Argenziano M, Naka Y. Revised screening scale to predict survival after insertion of a left ventricular assist device. J Thorac Cardiovasc Surg. 2003; 125 (04) 855-862.
  • 23 Lin CY, Tsai FC, Tian YC, Jenq CC, Chen YC, Fang JT, Yang CW. Evaluation of outcome scoring systems for patients on extracorporeal membrane oxygenation. Ann Thorac Surg 2007; 84 (04) 1256-1262.
  • 24 Lietz K, Long JW, Kfoury AG, Slaughter MS, Silver MA, Milano CA, Rogers JG, Naka Y, Mancini D, Miller LW. Outcomes of left ventricular assist device implantation as destination therapy in the post-REMATCH era: implications for patient selection. Circulation 2007; 116 (05) 497-505.
  • 25 Wang Y, Rosé CP, Ferreira A, McNamara DM, Kormos RL, Antaki JF. A Classification Approach for Risk Prognosis of Patients on Mechanical Ventricular Assistance. Proceedings of Machine Learning and Applications (ICMLA). 2010. Dec. 12-14 Boca Raton; Florida, USA: 2010. pp 293-298.
  • 26 Fitzpatrick JR, Frederick JR, Hsu VM, Kozin ED, O’Hara ML, Howell E. et al Risk score derived from pre-operative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant 2008; 27 (012) 1286-1292.
  • 27 Matthews JC, Koelling TM, Pagani FD, Aaronson KD. The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol 2008; 51 (022) 2163-2172.
  • 28 Ochiai Y, McCarthy PM, Smedira NG, Banbury MK, Navia JL, Feng J. et al Predictors of severe right ventricular failure after implantable left ventricular assist device insertion: analysis of 245 patients. Circulation 2012; 106 (12) (Suppl 1) I198-202.
  • 29 Kormos RL, Teuteberg JJ, Pagani FD, Russell SD, John R, Miller LW. et al Right ventricular failure in patients with the HeartMate II continuous flow left ventricular assist device: incidence, risk factors, and impact on outcomes. J Thorac Cardiovasc Surg 2010; 139 (05) 1316-1324.
  • 30 Wang Y, Simon M, Bonde P, Harris BU, Teuteberg JJ, Kormos RL. et al Prognosis of Right Ventricular Failure in Patients with Left Ventricular Assist Device based on Decision Tree with SMOTE. IEEE Trans Info Tech Biomed 2012; 16 (03) 383-390.
  • 31 Slaughter MS, Pagani FD, Rogers JG, Miller LW, Sun B, Russell SD. et al Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J Heart Lung Transplant 2010; 29: S1-S39.
  • 32 Kirchner J, Arnold M, Beckendorf C, Paule S, Czygan G. Heart failure monitoring with implantable defibrillators. Biomedical Engineering/Biomedizinische Technik 2012; 57 (Suppl. 01) (suppl) 1079-1082.
  • 33 White M, Howie-Esquivel J, Caldwell M. Improving Heart Failure Symptom Recognition: A Diary Analysis. Journal of Cardiovascular Nursing 2010; 25 (01) 7-12.
  • 34 Hayes K, Leet AS, Bradley SJ, Holland AE. Effects of exercise training on exercise capacity and quality of life in patients with a left ventricular assist device: A preliminary randomized controlled trial. J Heart Lung Transplant 2012; 31 (07) 729-734.
  • 35 Santelices LC, Wang Y, Severyn D, Druzdzel MJ, Kormos RL, Antaki JF. Development of a Hybrid Decision Support Model for Optimal Ventricular Assist Device Weaning. Ann Thorac Surg 2010; 90 (03) 713-720.
  • 36 Dandel M, Weng Y, Siniawski H, Stepanenko A, Krabatsch T, Potapov E, at al. Heart failure reversal by ventricular unloading in patients with chronic cardiomyopathy: criteria for weaning from ventricular assist devices. Eur Heart J 2011; 32 (09) 1148-1160.
  • 37 Birks EJ, George RS, Hedger M, Bahrami T, Wilton P, Bowles CT, Webb C, Bougard R, Amrani M, Yacoub MH, Dreyfus G, Khaghani A. Reversal of severe heart failure with a continuous-flow left ventricular assist device and pharmacological therapy: a prospective study. Circulation. 2011; 123 (04) 381-390.
  • 38 Boston JR, Antaki JF, Simaan MA. Hierarchical Control of Heart-Assist Devices. IEEE Robotics & Automation Magazine. 2003; 10: 54-64.
  • 39 Antaki JF, Choi S, Boston JR, Butler KC, Thomas DC, Amin DV. Speed control system for implanted blood pumps. US Patent 6,066,086: Nimbus Inc 2000
  • 40 Konishi H, Antaki JF, Amin DV, Boston JR, Kerrigan JP. et al Controller for an axial flow blood pump. Artificial Organs 1996; 20 (06) 618-620.
  • 41 Waters T, Allaire P, Tao G, Adams M, Bearnson G. et al Motor feedback physiological control for a continuous flow ventricular assist device. Artificial Organs 1999; 23 (06) 480-486.
  • 42 Giridharan GA, Skliar M. Physiological control of blood pumps without implantable sensors. Proceedings of the American Control Conference 2003 June 4–6. Denver; Colorado USA: 2003. pp 471-476.
  • 43 Oshikawa M, Araki K, Nakamura K, Anai H, and Onitsuka T. Detection of total assist and sucking points based on the pulsatility of a continuous flow artificial heart: in vivo evaluation. ASAIO J 1998; 44 (05) 704-707.
  • 44 Waters T, Allaire P, Tao G, Adams M, Bearnson G. et al Motor feedback physiological control for a continuous flow ventricular assist device. Artificial Organs 1999; 23 (06) 480-486.
  • 45 Giridharan GA, Skliar M. Nonlinear controller for ventricular assist devices. Artificial Organs 2002; 26 (011) 980-984.
  • 46 Giridharan GA, Skliar M, Olsen DB, Pantalos GM. Modeling and control of a brushless DC axial flow ventricular assist device. Asaio J 2002; 48 (03) 272-289.
  • 47 Parnis SM, Conger JL, Fuqua Jr. JM, Jarvik RK, Inman RW. et al Progress in the development of a transcutaneously powered axial flow blood pump ventricular assist system. Asaio J 1997; 43 (05) 576-580.
  • 48 Chen SH. Barorefle-Based Physiological Control of a Left Ventricular Assist Device. Thesis. The School of Engineering, University of Pittsburgh 2006
  • 49 McConahy DC. Application of multiobjective optimization to determining an optimal left ventricular assist device (LVAD) pump speed. Thesis. The School of Engineering, University of Pittsburgh 2007
  • 50 Konishi H, Antaki JF, Amin DV, Boston JR, Kerrigan JP. et al Controller for an axial flow blood pump. Artificial Organs 1996; 20 (06) 618-620.
  • 51 Yuhki A, Nogawa E, Miura M, Shimazaki Y, Takatani S. Detection of Suction and Regurgitation of the Implantable Centrifugal Pump Based on the Motor Current Waveform Analysis and Its Application to Optimization of Pump Flow. Artificial Organs. 1999; 23 (06) 532-537.
  • 52 Boston JR, Antaki JF, Simaan MA. Hierarchical Control of Heart-Assist Devices. IEEE Robotics & Automation Magazine 2003; 10: 54-64.
  • 53 Liu D, Boston JR, Lin H, Antaki JF, Simaan MA, Wu J. Monitoring the development of suction in an LVAD. Proceedings of the BMES-EMBS 1st joint Conference; 1999; 2003 pp 400-401.
  • 54 Vollkron M, Schima H, Huber L, Benkowski R, Morello G, Wieselthaler G. Advanced Suction Detection System for an Axial Blood Pumps. Artificial Organs 2006; 30 (09) 665-670.
  • 55 Ferreira A. A rule-based controller based on suction detection for rotary blood pumps. Thesis. The School of Engineering, University of Pittsburgh 2007
  • 56 Ferreira A, Chen S, Simaan MA, Boston JR, Antaki JF. A discriminant analysis-based suction detection system for rotary blood pumps. Proceedings of the Engineering in Medicine and Biology Society. 2006. Aug. 30-Sept. 3 New York City, USA: 2006. pp 5382-5385.
  • 57 Wang Y, Faragallah G, Divo E, Simaan MA. Detection of Ventricular Suction in an Implantable Rotary Blood Pumps Using Support Vector Machines. Proceedings of the IEEE Engineering in Medicine and Biology Conference. 2011. Aug. 30-Sept. 3 Boston, Massachusetts, USA: 2011. pp 3318-3321.
  • 58 Oshikawa Ì, Araki Ê, Endo G, Anai H, Sato M. Sensor less controlling method for a continuous flow left ventricular assist device. Artif Organs 2000; 24 (08) 600-605.
  • 59 Karantonis DM, Lovell NH, Ayre PJ, Mason DG, Cloherty SL. Identification and Classification of Physiologically Significant Pumping States in an Implantable Rotary Blood Pump. Artificial Organs 2006; 30 (09) 671-679.
  • 60 Karantonis DM, Cloherty SL, Lovell NH, Mason DG, Salamonsen RF. et al Noninvasive detection of suction in animplantable rotary blood pump using neural networks. Int. J. Computation Intelligence and Appl 2008; 7 (03) 237-247.
  • 61 Morello FGino. Blood pump system and method of operation. US Patent: 0215050 2004
  • 62 AlOmari AHH, Savkin AV, Stevens M, Mason DG, Timms DL. et al Developments in control systems for rotary left ventricular assist devices for heart failure patients: a review. Physiol Meas 2013; 34 (01) R1-27.
  • 63 Kozarski M, Ferrari G, Zieliñski K, Górczyñska K. Pa³ko. KJ et al A hybrid (Hydro-Numerical) Cardiovascular Model Application to Investigate Continuous-Flow Pump Assistance Effect. Biocybernetics and Biomedical Engineering 2012; 32 (04) 77-91.
  • 64 Tzallas AT, Rigas G, Karvounis EC, Tsipouras MG, Goletsis Y. et al A Gaussian Mixture Model to Detect Suction Events in Rotary Blood Pumps. Proceedings of the 12h Annual International Conference of the IEEE Bioinformatics & Bioengineering (BIBE); 2012 Nov. 11-13. Larnaka, Cyprus: 2012. pp 127-131.
  • 65 Brooke J. SUS: a “quick and dirty” usability scale. In:. PJordan PW, Thomas B, Weerdmeester BA, McClelland AL. Usability Evaluation in Industry.. London: Taylor and Francis; 2006