Vet Comp Orthop Traumatol 2008; 21(01): 8-14
DOI: 10.3415/VCOT-06-12-0099
Original Research
Schattauer GmbH

Pressure distributions on the medial tibial plateau after medial meniscal surgery and tibial plateau levelling osteotomy in dogs

A. Pozzi
1   Department of Veterinary Clinical Sciences,The Ohio State University, Columbus, Ohio, USA
,
A. S. Litsky
3   The Orthopaedic BioMaterials Laboratory, Departments of Orthopaedics and Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
,
J. Field
4   Orthopedic Unit, Repatriation General Hospital, Flinders University of South Australia, Australia
,
D. Apelt
1   Department of Veterinary Clinical Sciences,The Ohio State University, Columbus, Ohio, USA
,
C. Meadows
2   Department of Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
,
K. A. Johnson
1   Department of Veterinary Clinical Sciences,The Ohio State University, Columbus, Ohio, USA
› Author Affiliations
Further Information

Publication History

Received 18 December 2006

Accepted 20 April 2007

Publication Date:
17 December 2017 (online)

Summary

Objective: To evaluate the effect of medial meniscal release (MMR) and medial, caudal pole hemimeniscectomy (MCH) on pressure distribution in the cranial cruciate ligament (CCL) deficient canine stifle, and with tibial plateau levelling osteotomy (TPLO). Animals: Twelve adult dogs. Methods: In experiment one, six pairs of cadaveric canine stifles with an intact CCL were axially loaded with a servo-hydraulic material testing machine and pressure distributions were mapped and quantified using pressure sensitive films. Axial loading of each joint was then repeated following MMR, and again after MCH. In experiment two, six pairs of cadaveric canine stifles with or without TPLO were tested before and after CCL transection, and each MMR and MCH procedure using the same methods of experiment 1. Results: In experiment one, MMR and MCH had significant effects on the pressure distribution resulting in a 2.5-fold increase in the percentage of surface area with pressure higher than 10 MPa. In experiment two, CCL transection resulted in a significant change in pressure distribution only in the stifle without TPLO (P<0.05). Both MMR and MCH resulted in a 1.7-fold increase in the percentage of area with peak pressure in the stifle with TPLO (P<0.05). Conclusions: Meniscal surgery results in a change in pressure distribution and magnitude within the medial compartment of the stifle. Clinical relevance: Compromised function of the meniscus by either MMR or MCH result in stress concentration which may predispose to osteoarthritis.

 
  • References

  • 1 Ahmed Ahmed, Burke DL. In-vitro measurement of static pressure distribution in synovial joints--Part I: Tibial surface ofthe knee. J Biomech Eng 1983; 105: 216-225.
  • 2 Ahmed A. The load-bearing role of the knee menisci. In: Mow VC, Arnoczky SP, and Jackson DW. eds Knee Meniscus: Basic and clinical foundations. New York: Raven Press; 1992. p. 59-73.
  • 3 Bylski-Austrow DI, Malumed J, Meade T. et al. Knee joint contact pressure decreases after chronic meniscectomy relative to the acutely me- niscectomized joint: a mechanical study in the goat. J Orthop Res 1993; 11: 796-804.
  • 4 Fukubayashi Fukubayashi, Kurosawa H. The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthrotic knee joints. Acta Orthop Scand 1980; 51: 871-879.
  • 5 Hulse Hulse, Shires PK. The meniscus: Anatomy, function and treatment. Compendium Contin Educ Pract Vet 1983; 5: 765-774.
  • 6 Walker Walker, Erkman MJ. The role of the menisci in force transmission across the knee. Clin Orthop RelatRes 1975; 184-192.
  • 7 Bennett Bennett, May C. Meniscal damage associated with cruciate disease in the dog. J Small Anim Pract 1991; 32: 111-117.
  • 8 Flo GL. Meniscal injuries. Vet Clin North Am Small Anim Pract 1993; 23: 831-843.
  • 9 Flo GL. Classification of meniscal lesions in twenty-six consecutive canine meniscectomies. J Am AnimHosp Assoc 1983; 19: 335-340.
  • 10 Bailey CJ, Smith BA, Black AP. Geometric implications of the tibial wedge osteotomy for the treatment of cranial cruciate ligament disease in dogs. Vet Comp Orthop Traumatol 2007; 20: 169-174.
  • 11 Ralphs Ralphs, Whitney WO. Arthroscopic evaluation of menisci in dogs with cranial cruciate ligament injuries: 100 cases (1999-2000). J Am Vet Med Assoc 2002; 221: 1601-1604.
  • 12 Austin B, Montgomery RD, Wright J. et al. Evaluation of three approaches to meniscal release. Vet Comp Orthop Traumatol 2007; 20: 92-97.
  • 13 Bruce WJ, Rose A. Tuke et al. Evaluation of the triple tibial osteotomy. A new technoque for the management of the canine cruciate-deficient stifle. Vet Comp Orthop Traumatol 2007; 20: 159-168.
  • 14 Slocum Slocum, Slocum TD. Tibial plateau levelling osteotomy for repair of cranial cruciate ligament rupture in the canine. Vet Clin North Am Small Anim Pract 1993; 23: 777-795.
  • 15 Slocum B, Devine-Slocum T. Meniscalrelease. In Bojrab MJ. editor Current Techniques in Small Animal Surgery. Philadelphia: Lea and Febiger; 1998. p. 1991.
  • 16 Dupuis Dupuis, Harari J. Cruciate ligament andmeniscal injuries in dogs. Compendium Contin Educ Pract Vet 1993; 15: 215-232.
  • 17 Shrive NG, O'Connor JJ. Goodfellow JW Load- bearing in the knee joint. Clin Orthop Relat Res 1978; 279-287.
  • 18 Roos H, Lauren M, Adalberth T. et al. Knee osteoarthritis after meniscectomy: prevalence of radiographic changes after twenty-one years, compared withmatched controls. Arthritis Rheum 1998; 41: 687-693.
  • 19 Roos H, Adalberth T, Dahlberg L. et al. Osteoarthritis of the knee after injury to the anterior cruciate ligament or meniscus: the influence of time and age. Osteoarthritis Cartilage 1995; 3: 261-267.
  • 20 Cox JS, Nye CE, Schaefer WW. et al. The degenerative effects of partial and total resection of the medial meniscus in dogs' knees. Clin Orthop Relat Res 1975; 178-183.
  • 21 Lanzer Lanzer, Komenda G. Changes in articular cartilage after meniscectomy. Clin Orthop Relat Res 1990; 41-48.
  • 22 Johnson KA, Francis DJ, Manley PA. et al. Comparison of the effects of caudal pole hemi-menis- cectomy and complete medial meniscectomy in the canine stifle joint. Am J Vet Res 2004; 65: 1053-1060.
  • 23 Kurosawa H, Fukubayashi T, Nakajima H. Load- bearing mode ofthe knee joint: physical behavior of the knee joint with or without menisci. Clin Orthop Relat Res 1980; (149) 283-290.
  • 24 Ronsky JL, Herzog W, Brown TD. et al. In vivo quantification of the cat patellofemoraljoint contact stresses and areas. J Biomech 1995; 28: 977-983.
  • 25 Radin EL, Ehrlich MG, Chernack Retal. Effect of repetitive impulsive loading on the knee joints of rabbits. Clin Orthop Relat Res 1978; 131: 288-293.
  • 26 Warzee CC, Dejardin LM, Arnoczky SP. et al. Effect of tibial plateau leveling on cranial and caudal tibial thrusts in canine cranial cruciate-deficient stifles: an in vitro experimental study. Vet Surg 2001; 30: 278-286.
  • 27 Preston CA, Schulz KS, Kass PH. In vitro determination of contact areas in the normal elbow joint of dogs. Am JVet Res 2000; 61: 1315-1321.
  • 28 Kowaleski MP, Apelt D, Mattoon JS. et al. The effect of tibial plateau levelling osteotomy position on cranial tibial subluxation: an in vitro study. Vet Surg 2005; 34: 332-336.
  • 29 Piermattei Piermattei, Johnson KA. An atlas of surgical approaches to the bones and joints of the dog and cat. Philadelphia: W.B. Saunders; 2004. p. 360-363.
  • 30 Liggins Liggins, Finlay JB. Recording contact areas and pressures injoint interfaces. In: Little EG. editor Experimental mechanics: Technology transfer between high-tech engineering and biomechanics. Amsterdam: Elsevier; 1992. p. 71-88.
  • 31 Liggins AB, Surry K, Finlay JB. Sealing Fuji prescale pressure-sensitive film against fluid damage: the effect on its response. Strain 1995; 31: 57-62.
  • 32 Liggins Liggins, Finlay JB. Calibration and manipulation of data from Fuji pressure-sensitive film. In: Little EG. editor Experimental mechanics: Technology transfer between high-tech engineering and biomechanics. Amsterdam: Elsevier; 1992. p. 61-70.
  • 33 Pagano Pagano, Gauvreau K. Contingency tables. In: Pagano M. editor Principles of Biostatistics. Pacific Grove: Duxbury; 2000. p. 342-373.
  • 34 Anderson DR, Newman AP, Daniels AU. In vitro load transmission in the canine knee: the effect of medial meniscectomy and varus rotation. Knee Surg Sports Traumatol Arthrosc 1993; 1: 44-50.
  • 35 Krause WR, Pope MH, Johnson RJ. et al. Mechanical changes in the knee after meniscectomy. J Bone Joint Surg Am 1976; 58A: 599-604.
  • 36 Flechtenmacher J, Borodkin SL, Hollister SJ. et al. Tibial contact pressure distribution changes inthe canine cruciate ligament transection model of osteoarthrosis. In: Transactions of the 39th Annual Meeting, Orthopaedic Research Society. 1993. 18 721.
  • 37 Smith GN, Mickler EA, Albrecht ME. et al. Severity of medial meniscus damage in the canine knee after anterior cruciate ligament transection. Os- teoarthritis Cartilage 2002; 10: 321-326.
  • 38 Boyd Boyd, Myers PT. Meniscus preservation; rationale, repair techniques and results. Knee 2003; 10: 1-11.
  • 39 Berthiaume MJ, Raynauld JP, Martel-Pelletier J. et al. Meniscal tear and extrusion are strongly associated with progression of symptomatic knee osteoarthritis as assessed by quantitative magnetic resonance imaging. Ann Rheum Dis 2005; 64: 556-563.
  • 40 Guilak F, Meyer BC, Ratcliffe A. et al. The effects of matrix compression on proteoglycan metabolism in articular cartilage explants. Osteoarthri-tis Cartilage 1994; 2: 91-101.
  • 41 van Tienen TG, Heijkants RG, de Groot JH. et al. Presence and mechanism of knee articular cartilage degeneration after meniscal reconstruction in dogs. Osteoarthritis Cartilage 2003; 11: 78-84.
  • 42 Burr Burr, Radin EL. Microfractures and micro- cracks in subchondral bone: are they relevant to osteoarthritis?. Rheum Dis Clin North Am 2003; 29: 675-685.
  • 43 Radin Radin, Rose RM. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res 1986; 34-40.
  • 44 Clements KM, Bee ZC, Crossingham GV. et al. How severe must repetitive loading be to kill chondrocytes in articular cartilage?. Osteoarthritis Cartilage 2001; 9: 499-507.
  • 45 Hurtig Hurtig, Akens MK. Comparison of the contusive impact and ACL transection models of osteoarthritis. In: Transactions of the 50th Annual Meeting, Orthopaedic Research Society. 2004. 29 925.
  • 46 Allen PR, Denham RA, Swan AV. Late degenerative changes after meniscectomy. Factors affecting the knee after operation. J Bone Joint Surg 1984; 66B: 666-671.
  • 47 Appel H. Late results after meniscectomy in the knee joint. A clinical and roentgenologic follow- up investigation. Acta Orthop Scand Suppl 1970; 133: 101-111.
  • 48 Jorgensen U, Sonne-Holm S, Lauridsen F. et al. Long-term follow-up of meniscectomy in athletes. A prospective longitudinal study J Bone Joint Surg 1987; 69B: 80-83.
  • 49 Zavatsky AB. A kinematic-freedom analysis of a flexed-knee-stance testing rig. J Biomech 1997; 30: 277-280.
  • 50 Bolam CJ, Hurtig MB, Cruz A. et al. Characterization of experimentally induced post-traumatic osteoarthritis in the medial femorotibial joint of horses. Am JVet Res 2006; 67: 433-447.