Vet Comp Orthop Traumatol 2009; 22(03): 175-182
DOI: 10.3415/VCOT-08-06-0050
Review Article
Schattauer GmbH

Minimally invasive plate osteosynthesis: Applications and techniques in dogs and cats

C.C. Hudson
1   Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida, USA
,
A. Pozzi
1   Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida, USA
,
D.D. Lewis
1   Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida, USA
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received:14. Juni 2008

Accepted:02. Februar 2009

Publikationsdatum:
17. Dezember 2017 (online)

Summary

Bone plating has been used as a method of fracture management for many years. Recently, a trend toward the use of fracture fixation techniques which preserve the local fracture environment, known as biological osteosynthesis, has evolved. This trend has resulted in the development of a less traumatic method of bone plating referred to as minimally invasive plate osteosynthesis (MIPO), or percutaneous plating. During MIPO fracture stabilisation, plates are inserted through short incisions and a communicating epiperiosteal tunnel. Typically, bone plates applied in this fashion have a bridging function. Promising outcomes have been reported in human patients undergoing MIPO fracture stabilisation, and limited reports of the use of this technique in dogs and cats have yielded positive results as well. Careful case selection, pre-operative planning, and appropriate instrumentation are necessary when performing the technique. Rapid time to union, low complication rates and good return to function have been noted in human patients. Additional research is needed to define selection criteria and outline the definitive benefits of MIPO in dogs and cats.

 
  • References

  • 1 Miclau T, Martin RE. The evolution of modern plate osteosynthesis. Injury 1997; 28 (Suppl. 01) Suppl A3-6.
  • 2 Schutz M, Sudkamp NP. Revolution in plate osteo-synthesis: new internal fixator systems. J Orthop Sci 2003; 8: 252-258.
  • 3 Schatzker J. Changes in the AO/ASIF principles and methods. Injury 1995; 26 (Suppl. 02) Suppl B51-B56.
  • 4 Transforming surgery - changing lives: history [document on internet]. AO Foundation 2008 [updated, 2008; cited 2008 May 20]. Davos Platz, Switzerland. Available from. http://www.aofoundation.org/portal/wps/portal/Home
  • 5 Wagner M, Frigg R. AO manual of fracture management, internal fixators: concepts and cases using LCP and LISS. Clavadelerstrasse: AO Publishing 2006; 1-57.
  • 6 Palmer RH. Biological osteosynthesis. Vet Clin North Am Small Anim Pract 1999; 29: 1171-1185 vii
  • 7 Perren SM. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg Br 2002; 84: 1093-1110.
  • 8 Field JR, Tornkvist H. Biological fracture fixation: a perspective. Vet Comp Orthop Traumatol 2001; 14: 169-178.
  • 9 Perren SM. Backgrounds of the technology of internal fixators. Injury 2003; 34 (Suppl. 02) Suppl B1-3.
  • 10 Tepic S, Perren SM. The biomechanics of the PC-Fix internal fixator. Injury 1995; 26 (Suppl. 02) Suppl B5-10.
  • 11 Gautier E, Sommer C. Guidelines for the clinical application of the LCP. Injury 2003; 34 (Suppl. 02) Suppl B63-76.
  • 12 Wagner M. General principles for the clinical use of the LCP. Injury 2003; 34 (Suppl. 02) Suppl B31-42.
  • 13 Egol KA, Kubiak EN, Fulkerson E. et al. Biomechanics of locked plates and screws. J Orthop Trauma 2004; 18: 488-493.
  • 14 Ahmad M, Nanda R, Bajwa AS. et al. Biomechanical testing of the locking compression plate: When does the distance between bone and implant significantly reduce construct stability?. Injury 2007; 38: 358-364.
  • 15 Baumgaertel F, Buhl M, Rahn BA. Fracture healing in biological plate osteosynthesis. Injury 1998; 29. (Suppl. 03) Suppl C3-6.
  • 16 Farouk O, Krettek C, Miclau T. et al. Effects of percutaneous and conventional plating techniques on the blood supply to the femur. Arch Orthop Trauma Surg 1998; 117: 438-441.
  • 17 Borrelli J, Prickett W, Song E. et al. Extraosseous blood supply of the tibia and the effects of different plating techniques: a human cadaveric study. J Orthop Trauma 2002; 16: 691-695.
  • 18 Claes L, Heitemeyer U, Krischak G. et al. Fixation technique influences osteogenesis of comminuted fractures. Clin Orthop Relat Res 1999; 365: 221-229.
  • 19 O'Sullivan ME, Chao EY, Kelly PJ. The effects of fixation on fracture-healing. J Bone Joint Surg Am 1989; 71: 306-310.
  • 20 Mizuno K, Mineo K, Tachibana T. et al. The osteo-genetic potential of fracture haematoma. Subperiosteal and intramuscular transplantation of the haematoma. J Bone Joint Surg Br 1990; 72: 822-829.
  • 21 Aron DN, Palmer RH, Johnson AL. Biologic strategies and a balanced concept for repair of highly comminuted long bone fractures. Comp Cont Edu Small Anim 1995; 17: 35-47.
  • 22 Johnson AL. Current concepts in fracture reduction. Vet Comp Orthop Traumatol 2003; 16: 59-66.
  • 23 Johnson AL, Egger EL, Eurell JC. et al. Biomechanics and biology of fracture healing with external skeletal fixation. Comp Cont Edu Small Anim 1998; 20: 487-501.
  • 24 Palmer RH, Hulse DA, Hyman WA. et al. Principles of bone healing and biomechanics of external skeletal fixation. Vet Clin North Am Small Anim Pract 1992; 22: 45-68.
  • 25 Johnson AL, Smith CW, Schaeffer DJ. Fragment reconstruction and bone plate fixation versus bridging plate fixation for treating highly comminuted femoral fractures in dogs: 35 cases (1987–1997). J Am Vet Med Assoc 1998; 213: 1157-1161.
  • 26 Eugster S, Schawalder P, Gaschen F. et al. A prospective study of postoperative surgical site infections in dogs and cats. Vet Surg 2004; 33: 542-550.
  • 27 Krettek C, Schandelmaier P, Miclau T. et al. Minimally invasive percutaneous plate osteosynthesis (MIPO) using the DCS in proximal and distal fe-moral fractures. Injury 1997; 28 (Suppl. 01) Suppl A20-30.
  • 28 Papakostidis C, Grotz MR, Papadokostakis G. et al. Femoral biologic plate fixation. Clin Orthop Relat Res 2006; 450: 193-202.
  • 29 Rozbruch SR, Muller U, Gautier E. et al. The evolution of femoral shaft plating technique. Clin Orthop Relat Res 1998; 354: 195-208.
  • 30 Horstman CL, Beale BS, Conzemius MG. et al. Biological osteosynthesis versus traditional anatomic reconstruction of 20 long-bone fractures using an inter-locking nail: 1994–2001. Vet Surg 2004; 33: 232-237.
  • 31 Pettit GD. History of external skeletal fixation. Vet Clin North Am Small Anim Pract 1992; 22: 1-10.
  • 32 Johnson AL, Seitz SE, Smith CW. et al. Closed reduction and type-II external fixation of comminuted fractures of the radius and tibia in dogs: 23 cases (1990–1994). J Am Vet Med Assoc 1996; 209: 1445-1448.
  • 33 Harari J. Complications of external skeletal fixation. Vet Clin North Am Small Anim Pract 1992; 22: 99-107.
  • 34 Tong G, Bavonratanavech S. AO manual of fracture management: minimally invasive plate osteosyn-thesis (MIPO). Clavadelerstrasse: AO Publishing; 2007: 3-7.
  • 35 Krettek C, Muller M, Miclau T. Evolution of minim-ally invasive plate osteosynthesis (MIPO) in the femur. Injury 2001; 32 (Suppl. 03) Suppl C14-23.
  • 36 Ruedi TP, Buckley R, Moran CG. AO principles of fracture management, volume 1-Principles. Second ed. Clavadelerstrasse: AO Publishing; 2007: 199-210.
  • 37 Borg T, Larsson S, Lindsjo U. Percutaneous plating of distal tibial fractures. Preliminary results in 21 patients. Injury 2004; 35: 608-614.
  • 38 Schmokel HG, Stein S, Radke H. et al. Treatment of tibial fractures with plates using minimally invasive percutaneous osteosynthesis in dogs and cats. J Small Anim Pract 2007; 48: 157-160.
  • 39 Henry SL. Supracondylar femur fractures treated percutaneously. Clin Orthop Relat Res 2000; 375: 51-59.
  • 40 Arens S, Kraft C, Schlegel U. et al. Susceptibility to local infection in biological internal fixation. Experimental study of open vs minimally invasive plate osteosynthesis in rabbits. Arch Orthop Trauma Surg 1999; 119: 82-85.
  • 41 Farouk O, Krettek C, Miclau T. et al. Minimally invasive plate osteosynthesis: Does percutaneous plating disrupt femoral blood supply less than the traditional technique?. J Orthop Trauma 1999; 13: 401-406.
  • 42 Aron DN, Dewey CW. Application and postoperative management of external skeletal fixators. Vet Clin North Am Small Anim Pract 1992; 22: 69-97.
  • 43 Marcellin-Little DJ. Fracture treatment with circular external fixation. Vet Clin North Am Small Anim Pract 1999; 29: 1153-1170.
  • 44 Kreder HJ, Hanel DP, Agel J. et al. Indirect reduction and percutaneous fixation versus open reduction and internal fixation for displaced intra-articular fractures of the distal radius: a randomised, controlled trial. J Bone Joint Surg Br 2005; 87: 829-836.
  • 45 Collinge CA, Sanders RW. Percutaneous plating in the lower extremity. J Am Acad Orthop Surg 2000; 8: 211-216.
  • 46 Pozzi A, Hudson CC, Lewis DD. Minimally invasive plate osteosynthesis: Initial clinical experience in 16 cases. Proceedings of the annual conference of the Veterinary Orthopaedic Society; 2008. Big Sky; Montana, USA: March 9–14 2008
  • 47 Piermattei DL, Flo GL, DeCamp CE. Handbook of small animal orthopedics and fracture repair. 4 ed. St. Louis; Saunders Elsevier: 2006: 31-42.
  • 48 Rovesti GL, Margini A, Cappellari F. et al. Clinical application of intraoperative skeletal traction in the dog. Vet Comp Orthop Traumatol 2006; 19: 14-19.
  • 49 Apivatthakakul T, Arpornchayanon O, Bavornratanavech S. Minimally invasive plate osteosynthesis (MIPO) of the humeral shaft fracture. Is it possible? A cadaveric study and preliminary report. Injury 2005; 36: 530-538.
  • 50 Livani B, Belangero WD. Bridging plate osteosyn-thesis of humeral shaft fractures. Injury 2004; 35: 587-595.
  • 51 Wenda K, Runkel M, Degreif J. et al. Minimally invasive plate fixation in femoral shaft fractures. Injury 1997; 28 (Suppl. 01) Suppl A13-19.
  • 52 Ziran BH, Belangero W, Livani B. et al. Percutaneous plating of the humerus with locked plating: technique and case report. J Trauma 2007; 63: 205-210.
  • 53 Smith J, Berry G, Laflamme Y. et al. Percutaneous insertion of a proximal humeral locking plate: an anatomic study. Injury 2007; 38: 206-211.
  • 54 Laflamme GY, Rouleau DM, Berry GK. et al. Percutaneous humeral plating of fractures of the proximal humerus: results of a prospective multicenter clinical trial. J Orthop Trauma 2008; 22: 153-158.
  • 55 Oh CW, Park BC, Kyung HS. et al. Percutaneous plating for unstable tibial fractures. J Orthop Sci 2003; 8: 166-169.
  • 56 Redfern DJ, Syed SU, Davies SJ. Fractures of the distal tibia: minimally invasive plate osteosynthesis. Injury 2004; 35: 615-620.
  • 57 Schmokel HG, Hurter K, Schawalder P. Percutaneous plating of tibial fractures in two dogs. Vet Comp Orthop Traumatol 2003; 16: 191-195.
  • 58 Ruedi TP, Sommer C, Leutenegger A. New techniques in indirect reduction of long bone fractures. Clin Orthop Relat Res 1998; 347: 27-34.
  • 59 Wong EW, Lee EW. Percutaneous plating of lower limb long bone fractures. Injury 2006; 37: 543-553.
  • 60 Beale BS, Hulse DA, Schulz KS. et al. Small animal arthroscopy. Philadelphia: Saunders; 2003: 78.
  • 61 Weiss DB, Kaar SG, Frankenburg EP. et al. Locked versus unlocked plating with respect to plate length in an ulna fracture model. Bull NYU Hosp Jt Dis 2008; 66: 5-8.
  • 62 Sanders R, Haidukewych GJ, Milne T. et al. Minimal versus maximal plate fixation techniques of the ulna: the biomechanical effect of number of screws and plate length. J Orthop Trauma 2002; 16: 166-171.
  • 63 Cabassu JP. Elastic plate osteosynthesis of femoral shaft fractures in young dogs. Vet Comp Orthop Traumatol 2001; 14: 40-45.
  • 64 Sarrau S, Meige F, Autefage A. Treatment of femoral and tibial fractures in puppies by elastic plate osteo-synthesis. A review of 17 cases. Vet Comp Orthop Traumatol 2007; 20: 51-58.
  • 65 Keller MA, Voss K, Montavon PM. The ComPact UniLock 2.0/2.4 system and its clinical application in small animal orthopedics. Vet Comp Orthop Traumatol 2005; 18: 83-93.
  • 66 Aguila AZ, Manos JM, Orlansky AS. et al. In vitro bio-mechanical comparison of limited contact dynamic compression plate and locking compression plate. Vet Comp Orthop Traumatol 2005; 18: 220-226.
  • 67 Schwandt CS, Montavon PM. Locking compression plate fixation of radial and tibial fractures in a young dog. Vet Comp Orthop Traumatol 2005; 18: 194-198.
  • 68 Post C, Guerrero T, Voss K. et al. Temporary transarticular stabilization with a locking plate for medial shoulder luxation in a dog. Vet Comp Orthop Traumatol 2008; 21: 166-170.
  • 69 Bone LB. Indirect fracture reduction: A technique for minimizing surgical trauma. J Am Acad Orthop Surg 1994; 2: 247-254.
  • 70 Leunig M, Hertel R, Siebenrock KA. et al. The evolution of indirect reduction techniques for the treatment of fractures. Clin Orthop Relat Res 2000; 375: 7-14.
  • 71 Reems MR, Beale BS, Hulse DA. Use of a plate-rod construct and principles of biological osteosynthesis for repair of diaphyseal fractures in dogs and cats: 47 cases (1994–2001). J Am Vet Med Assoc 2003; 223: 330-335.
  • 72 Hulse D, Hyman W, Nori M. et al. Reduction in plate strain by addition of an intramedullary pin. Vet Surg 1997; 26: 451-459.
  • 73 Rovesti GL, Margini A, Cappellari F. et al. Intraoperative skeletal traction in the dog: a cadaveric study. Vet Comp Orthop Traumatol 2006; 19: 9-13.
  • 74 Oh CW, Oh JK, Kyung HS. et al. Double plating of unstable proximal tibial fractures using minimally invasive percutaneous osteosynthesis technique. Acta Orthop 2006; 77: 524-530.
  • 75 Hedequist DJ, Sink E. Technical aspects of bridge plating for pediatric femur fractures. J Orthop Trauma 2005; 19: 276-279.
  • 76 Oh JK, Oh CW, Jeon IH. et al. Percutaneous plate stabilization of proximal tibial fractures. J Trauma 2005; 59: 431-437.
  • 77 Lau TW, Leung F, Chan CF. et al. Wound complication of minimally invasive plate osteosynthesis in distal tibia fractures. Int Orthop 2007; 32: 697-703.