Vet Comp Orthop Traumatol 2014; 27(06): 441-446
DOI: 10.3415/VCOT-14-02-0034
Original Research
Schattauer GmbH

Computed tomography assisted determination of optimal insertion points and bone corridors for transverse implant placement in the feline tarsus and metatarsus

M. Benlloch-Gonzalez
1   Stockholm’s Regional Small Animal Hospital Bagarmossen, Bagarmossen, Sweden
,
M. Grapperon-Mathis
1   Stockholm’s Regional Small Animal Hospital Bagarmossen, Bagarmossen, Sweden
,
B. Bouvy
2   Centre Hospitalier Vétérinaire Frégis, Arcueil, France
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 28. Februar 2014

Accepted: 29. Juli 2014

Publikationsdatum:
23. Dezember 2017 (online)

Summary

Objective: Describe optimal corridors for mediolateral or lateromedial implant placement in the feline tarsus and base of the metatarsus.

Methods: Computed tomographic images of 20 cadaveric tarsi were used to define optimal talocalcaneal, centroquartal, distal tarsal, and metatarsal corridors characterized by medial and lateral insertion points (IP), mean height, width, length and optimal dorsomedial-plantarolateral implantation angle (OIA).

Results: Talocalcaneal level: The IP were at the head of the talus and plantar to the peroneal tubercle of the calcaneus and OIA was 22.7° ± 0.3. Centroquartal level: The IP were at the centre of the medial surface of the central tarsal bone and dorsoproximal to the tuberosity of the fourth tarsal bone and OIA was 5.9° ± 0.06. Distal tarsal level: The IP were at the centre of the medial surface of the tarsal bone II and dorsodistal to the tuberosity of the fourth tarsal bone and OIA was 5.4° ± 0.14. Metatarsal level: The IP were at the dorsomedial surface of the proximal end of the metatarsal bone II and at the dorsolateral surface of metatarsal bone V and OIA was 0.5° ± 0.06. Significant positive correlation was found between body weight and the length of each corridor.

Clinical significance: Most of the corridors obtained in this study had a diameter between 1.5 mm and 2 mm with a length of 15 mm to 18 mm, which stresses the importance of their accurate placement.

 
  • References

  • 1 Evans HE. Arthrology: Ligaments and joints of the pelvic limb. In: Evans HE. editor. Miller’s Anatomy of the Dog Philadelphia: WB Saunders; 1993: 244-257.
  • 2 Evans HE. The skeleton. Bones of the pelvic limb. Tarsus. In: Evans HE. editor. Miller’s Anatomy of the Dog Philadelphia: WB Saunders; 1993: 212-214.
  • 3 Corr S. Management of distal limb shearing injuries in cats. J Feline Med Surg 2009; 11: 747-757.
  • 4 Voss K, Langley-Hobbs SJ, Montavon PM. Tarsal joint. In: Montavon PM, Voss K, Langley-Hobbs SJ. editors. Feline Orthopedic Surgery and Musculoskeletal Disease Edinburgh: Elsevier Saunders; 2009: 507-526.
  • 5 Schmökel HG, Hartmeier GE, Kaser-Hotz B. et al. Tarsal injuries in the cat: A retrospective study of 21 cases. J Small Anim Pract 1994; 35: 156-162.
  • 6 Piermattei DL, Flo GL, DeCamp CE. Fractures and other orthopaedic injuries of the tarsus, metatarsus and phalanges. In: Brinker, Piermattei and Flo’s Handbook of Small Animal Orthopaedics and Fracture Repair. 4th ed. Philadelphia: Saunders; 2006: 661-713.
  • 7 Matthiesen DT. Tarsal injuries in the dog and cat. Comp Contin Educ Pract Vet 1983; 5: 548-555.
  • 8 Gorse MJ, Purinton PT, Penwick RC. et al. Talocalcaneal luxation: an anatomic and clinical study. Vet Surg 1990; 19: 429-434.
  • 9 Kulendra E, Grierson J, Okushima S. et al. Evaluation of the transarticular external skeletal fixator for the treatment of tarsocrural instability on 32 cats. Vet Comp Orthop Traumatol 2011; 5: 320-325.
  • 10 Shani J, Yeshurun Y, Shahar R. Arthrodesis of the tarsometatarsal joint, using type II ESF with acrylic connecting bars in four dogs. Vet Comp Orthop Traumatol 2006; 1: 61-63.
  • 11 Dyce J, Whitelock RG, Robinson KV. et al. Arthrodesis of the tarsometatarsal joint using a laterally applied plate in 10 dogs. J Small Anim Pract 1998; 39: 19-22.
  • 12 Muir P, Norris JL. Tarsometatarsal subluxation in dogs: partial tarsal arthrodesis by plate fixation. J Am Anim Hosp Assoc 1999; 35: 155-162.
  • 13 Fettig AA, McCarthy RJ, Kowaleski MP. Intertarsal and tarsometatarsal arthrodesis using 2.0/2.7-mm or 2.7/3.5-mm hybrid dynamic compression plates. J Am Anim Hosp Assoc 2002; 38: 364-369.
  • 14 McKee WM, May C, Macias C. et al. Pantarsal arthrodesis with a customised medial or lateral bone plate in 13 dogs. Vet Record 2004; 154: 165-170.
  • 15 Theoret MC, Moens NMM. The use of veterinary cuttable plates for carpal and tarsal arthrodesis in small dogs and cats. Can Vet J 2007; 48: 165-168.
  • 16 Roch SP, Clements DN, Mitchell RAS. et al. Complications following tarsal arthrodesis using bone plate fixation in dogs. J Sm Anim Pract 2008; 49: 117-126.
  • 17 Barnes DC, Knudsen CS, Gosling M. et al. Complications of lateral plate fixation compared with tension band wiring and pin or lag screw fixation for calcaneoquartal arthrodesis. Vet Comp Orthop Traumatol 2013; 6: 445-452.
  • 18 Gielen IM, De Rycke LM, van Bree HJ. et al. Computed tomography of the tarsal joint in clinically normal dogs. Am J Vet Res 2001; 62: 1911-1915.
  • 19 Sonntag F, Mihaljevic M, Klumpp S. et al. Gliedmaßen und Wirbelsäule. Hintergliedmaße. In: Mihaljevic M, Kramer M, Gomercic H. editors. CT- und MRI-Atlas: Transversalanatomie des Hundes Stuttgart: Parey; 2009: 172-195.
  • 20 Galateanu G, Apelt D, Aizenberg I. et al. Canine tarsal architecture as revealed by high-resolution computed tomography. Vet J 2013; 196: 374-380.
  • 21 Ryken TC, Goel VK, Clausen JD. et al. Assesment of unicortical and bicortical fixation in a quasistatic cadaveric model: role of bone mineral density and screw torque. Spine 1995; 20: 1861-1867.
  • 22 Ferrara LA, Ryken TC. Screw pullout testing. In: An YH, Draughn RA. editors. Mechanical testing of bone and the bone-implant interface Boca Raton: CRC Press; 2000: 551-566.
  • 23 Krag MH, Beynnon BD, Pope MH. et al. Depth of insertion of transpedicular vertebral screws into human vertebrae: effect upon screw-vertebra interface strength. J Spinal Disord 1988; 287-294.
  • 24 Chao EYS. Biomechanics of external fixation. In: Brooker AF, Cooney WP, Chao EYS. editors. Principles of external fixation Baltimore: Williams and Wilkins; 1983: 165-199.
  • 25 Li A, Gibson N, Carmichael S. et al. Thirteen pancarpal arthrodeses using 2.7/3.5 mm hybrid dynamic compression plates. Vet Comp Orthop Traumatol 1999; 12: 102-107.
  • 26 Anderson MA, Aron DN, Palmer RH. Improving pin selection and insertion technique for external skeletal fixation. Comp Cont Ed Pract Vet 1997; 19: 485-493.
  • 27 Voss K, Keller M, Montavon PM. Internal splinting of dorsal intertarsal and tarsometatarsal instabilities in dogs and cats with the ComPact Unilock 2.0/2.4 System. Vet Comp Orthop Traumatol 2004; 17: 125-130.
  • 28 Fitzpatrick N, Sajik D, Farrell M. Feline pantarsal arthrodesis using pre-contoured dorsal plates applied according to the principles of percutaneous plate arthrodesis. Vet Comp Orthop Traumatol 2013; 26: 399-407.
  • 29 Hudson CC, Pozzi A. Minimally invasive repair of central tarsal bone luxation in a dog. Vet Comp Orthop Traumatol 2012; 25: 79-82.