RSS-Feed abonnieren
DOI: 10.3415/VCOT08-02-0021
Cartilage replacement in dogs
A preliminary investigation of colonization of ceramic matricesPublikationsverlauf
Received:25. Februar 2008
Accepted:03. März 2008
Publikationsdatum:
17. Dezember 2017 (online)
Summary
The objective of this study was to examine the behaviour of canine chondrocytes following colonisation of a β-tricalcium phosphate (β-TCP, Cerasorb®, Curasan) matrix. In total, five of these cylinders were inoculated with 1.5 ml of cell suspension and subsequently incubated for about one week. In the second part of the experiment, another five Cerasorb® cylinders were each studded with two cartilage chips of variable size and then incubated for about one week. The series of experiments were analyzed using cell staining and imaging techniques that included scanning electron microscopy. Cell migration onto the matrix was proven for both colonization methods. It was observed that colonising the cylinders by pipetting cell suspension on them produced far better results, with respect to both growth rate and spreading of the cells, than did colonisation by studding with cartilage chips. A homogenous, surface-covering colonisation with predominantly living cells was demonstrated by scanning electron microscopy in the chondrocyte morphology. In comparison to cell-culture controls, there was a clearly better colonisation, with cells attached to both the material's primary grains and its micropores. The ceramic studied is well accepted by canine chondrocytes, and appears to be fundamentally well-suited as a matrix for bio-artificial bone-cartilage replacement. Additional qualitative analyses and a series of experiments aiming to accelerate cell proliferation are planned for subsequent studies.
-
References
- 1 Metz J. Makroskopie, Histologie und Zellbiologie des Gelenkknorpels. In: Gelenkknorpeldefekte. Erggelet C, Steinwachs M (eds). Darmstadt: Steinkopff 2001; 3-14.
- 2 Liebich HG. Knorpelgewebe (Textus cartilagineus). In: Funktionelle Histologie der Haussäugetiere. Lehrbuch und Farbatlas für Studium und Praxis, vol 3. Liebich HG. (ed) Stuttgart, New York: Schattauer; 1999: 69-72.
- 3 Rohen W, Lütjen-Drecoll E. Funktionelle Histologie. Stuttgart: Schattauer 2001.
- 4 Hardingham TE, Fosang AJ, Dudhia J. Aggrecan, the chondroitin/keratan sulfate proteoglykan from cartilage. In: Articular Cartilage and Osteoarthritis. Kuettner KE. (ed) New York: Raven Press; 1992: 5-20.
- 5 Gaissmaier C, Fritz J, Mollenhauer J. et al. Verlauf klinisch symptomatischer Knorpelschäden des Kniegelenks. Ergebnisse ohne und mit biologischer Rekonstruktion. Dtsch Ärztebl 2003; 100: 2448-2453.
- 6 Johnson LL. Arthroscopic abrasion arthroplasty: Historical and pathological perspective: Present status. J Arthroscopy 1986; 2: 54-69.
- 7 Marlovits S, Vécsei V. Möglichkeiten zur chirurgischen Therapie von Knorpeldefekten – Teil 1: Grundlagen der Knorpelbiologie und der Heilung von Knorpeldefekten. Acta Chir Austriaca 2000; 32: 124-129.
- 8 Pässler HH. Die Mikrofrakturierung zur Behand-lung von Knorpeldefekten. Zentralbl Chir 2000; 125: 500-504.
- 9 Schmidt H, Hasse E. Arthroskopische operative Behandlung von umschriebenen Knorpelschäden mittels Spongialisation oder Pridie-Bohrung. Beitr Orthop Traumatol 1989; 36: 35-37.
- 10 Wang Y, Kim UJ, Blasioli DJ. et al. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Bio-materials 2005; 26: 7082-7094.
- 11 Sanders TG, Mentzer KD, Miller MD. et al. Autogenous osteochondral “plug” transfer for the treatment of focal chondral defects: postoperative MR appearance with clinical correlation. Skeletal Radiol 2001; 30: 570-578.
- 12 Imhoff AB, Öttl GM, Burkart A. et al. Osteochondrale autologe Transplantation an verschiedenen Gelenken. Orthopäde 1999; 28: 33-44.
- 13 Foitzik C, Staus H. Phasenreines β-Tricalciumphosphat zum Knochenersatz bei parodontaler Indikation. Quintessenz 1999; 10: 1049-1058.
- 14 Gruber AJ. Erfahrungen mit Cerasorb→ in der Praxis des niedergelassenen Chirurgen. Der niedergelassene Chirurg 1999; 14: 1-3.
- 15 Hauschild G, Merten HA, Bader A. et al. Bioartificial bone grafting: Tarsal joint fusion in a dog using a bioartificial composite bone graft consisting of ß-tricalciumphosphate and platelet rich plasma – A case report. Vet Comp Orthop Traumatol 2005; 1: 52-54.
- 16 Hauschild G, Bader A, Uhr G. et al. Klinischer Einsatz von ß-Tricalciumphosphat – Erfahrungen mit einem matrixorientierten Ansatz zur Osteoregeneration. Tierärztl Prax (K) 2007; 35: 5-13.
- 17 Szabo G, Suba Z, Hrabak K. et al. Autogeneous bone versus beta-tricalcium phosphate graft alone for bilateral sinus elevations (2– and 3–dimensional computed tomographic, histologic, and histomorpho-metric evaluations): preliminary results. Int J Oral Maxillofac Implants 2001; 5: 681-692.
- 18 Guo X, Wang C, Duan C. et al. Repair of osteochondral defects with autologous chondrocytes seeded onto bioceramic scaffold in sheep. Tissue Engineering 2004; 10 (11/12) 1830-1840.
- 19 Freshney R. Culture of Animal Cells: A Manual of Basic Technique. Alan R. Liss, Inc.; New York: 1987: 117.
- 20 Lydon MJ, Keeler KD, Thomas DB. Vital DNA staining in cell sorting by flow microfluorometry. J Cell Phys 1980; 102: 175-181.
- 21 Frank M. Einsatz der osteochondralen Transplantation (Mosaicplasty→) in der Therapie der Osteochondrosis dissecans (OCD) des Kniegelenkes beim Hund. Tierärztl Prax (K) 2003; 31: 346-355.
- 22 Huntley JS, Bush PG, MC Birnie JM. et al. Chondrocyte death associated with human femoral osteochondral harvest as performed for mosaicplasty. J Bone Joint Surg Am 2005; 87: 351-360.
- 23 Marlovits S, Vécsei V. Möglichkeiten zur chirurgischen Therapie von Knorpeldefekten – Teil 2: Chirurgische Behandlungsoptionen zur biologischen Knorpelreparatur. Acta Chir. Austriaca 2000; 32 (04) 185-195.
- 24 Wagner H. Operative Behandlung der Osteochondrosis dissecans des Kniegelenkes. Z Orthopädie 1964; 62-64.
- 25 Matsusue Y, Yamamuro T, Hma H. Case report: Arthroscopic multiple osteochondral transplantation to the chondral defect in the knee associated with cruciate ligament disruption. Arthroscopy 1993; 9: 318-321.
- 26 Bobic V. Arthroscopic osteochondral autograft transplantation in anterior cruciate ligament reconstruction: a preliminary clinical study. Knee Surg Sports Traumatol Arthosc 1996; 3: 262-264.
- 27 Hangody L, Karpati Z, Szerb I, et al. Autologous osteochondral mosaic-like graft technique for replacing weight bearing cartilage defects. Abstract, 7th Congress of the ESSKA 1996, Budapest, Hungary ((author: please complete)).
- 28 Foitzik C, Stamm M. Einsatz von phasenreinem ß-Tricalciumphosphat zur Auffüllung von ossären Defekten – Biologische Materialvorteile und klinische Erfahrungen. Quintessenz 1997; 48: 1365-1377.
- 29 Heide H, Karbe E, Kling HG. et al. Entwicklung und tierexperimentelle Untersuchungen von implantierbaren, porösen keramischen Werkstoffen. Zwei Teilberichte für das Bundesministerium für Forschung und Technologie, Bonn, Referat III B 3–7/12 (1973).
- 30 Soost F. (2000): Validierung des Knochenumbaus von Knochenersatzmaterialien in der Mund-, Kiefer- und Gesichtschirurgie. Berlin; 2000; Humboldt-Universität, Habilitationsschrift.
- 31 Dämmrich K, Loppnow H. Knorpelgewebe. In: Allgemeine Pathologie für Tierärzte und Studierende der Tiermedizin, vol 8. Stünzi H, Weiss E. (eds) Berlin, Hamburg: Verlag Paul Parey; 1990: 134-136.
- 32 Fox SM, Walker AM. The etiopathogenesis of osteochondrosis. Vet Med 1993; 88: 116-118.
- 33 Goodhew PJ, Humphreys FJ. Elektronenmikroskopie: Grundlagen und Anwendung, vol 1. London: McGraw-Hill Verlag; 1991
- 34 Schmidt PC, Weyhing K. Pulverinhalte aus der Nähe betrachtet. Dtsch Apoth Ztg 2005; 145 Nr. (20) 68-75.