CC BY-NC-ND 4.0 · Indian J Radiol Imaging 2012; 22(04): 267-275
DOI: 10.4103/0971-3026.111478
ORIGINAL ARTICLE

A pictoral review on somatostatin receptor scintigraphy in neuroendocrine tumors: The role of multimodality imaging with SRS and GLUT receptor imaging with FDG PET-CT

Sneha Shah
Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Parel, Mumbai
,
Nilendu Purandare
Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Parel, Mumbai
,
Archi Agrawal
Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Parel, Mumbai
,
Venkatesh Rangarajan
Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Parel, Mumbai
› Institutsangaben
Source of Support: Nill.

Abstract

Somatostatin receptor scintigraphy is considered as a comprehensive imaging modality for many neuroendocrine tumors. Multiple radiotracers using combinations of gamma or positron emitting radionuclides and tracers are now available. Newer radiopharmaceuticals using 99m Tc labeled with TOC, TATE, NOC are good alternatives to the 68 - Gallium radiotracers where the PET facility is not available. The pictoral depicts the role of SRS using 99mTC - HYNIC -TOC radiotracers in staging and treatment planning of NETs. Characterization of the tumor biology using combined SRS and FDG PET/CT is also demonstrated with a proposed categorization method. The emerging role of SRS in tailored targeted radionuclide therapy is outlined in brief.



Publikationsverlauf

Artikel online veröffentlicht:
04. Oktober 2021

© 2012. Indian Radiological Association. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • References

  • 1 Modlin IM, Lye KD, Kidd M. A 5-decade analysis of 13,715 carcinoid tumors. Cancer 2003;97:934-59.
  • 2 Von Moll L, McEwan AJ, Shapiro B, Sisson JC, Gross MD, Lloyd R, et al. Iodine-131 MIBG scintigraphy of neuroendocrine tumors other than pheochromocytoma and neuroblastoma. J Nucl Med 1987;28:979-88.
  • 3 Kaltsas G, Korbonits M, Heintz E, Mukherjee JJ, Jenkins PJ, Chew SL, et al. Comparison of somatostatinanalog and meta-iodobenzylguanidine radionuclides in the diagnosis and localization of advanced neuroendocrine tumors. J Clin Endocrinol Metab 2001;86:895-902.
  • 4 Balon HR, Brown TL, Goldsmith SJ, Silberstein EB, Krenning EP, Lang O, et al. The SNM practice guideline for somatostatin receptor scintigraphy 2.0. J Nucl Med Technol 2011;39:317-24.
  • 5 Rufini V, Calcagni ML, Baum RP. Imaging of neuroendocrine tumors. Semin Nucl Med 2006;36:228-47.
  • 6 Krenning EP, Kwekkeboom DJ, Bakker WH, Breeman WA, Kooij PP, Oei HY, et al. Somatostatin receptor scintigraphy with 111In-DTPA-D-Phe1-and 123I-Tyr3-octreotide: The Rotterdam experience with more than 1000 patients. Eur J Nucl Med 1993;20:716-31.
  • 7 Gibril F, Jensen RT. Diagnostic uses of radiolabelled somatostatin receptor analogues in gastroenteropancreatic endocrine tumours. Dig Liver Dis 2004;36:S106-20.
  • 8 de Herder WW, Kwekkeboom DJ, Valkema R, Feelders RA, van Aken MO, Lamberts SW, et al. Neuroendocrine tumors and somatostatin: Imaging techniques. J Endocrinol Invest 2005;28:132-6.
  • 9 Naswa N, Sharma P, Kumar A, Nazar AH, Kumar R, Chumber S, et al. Gallium-68-DOTA-NOC PET/CT of patients with gastroenteropancreatic neuroendocrine tumors: A prospective single-center study. AJR Am J Roentgenol 2011;197:1221-8.
  • 10 Gabriel M, Decristoforo C, Donnemiller E, Ulmer H, WatfahRychlinski C, Mather SJ, et al. An intrapatient comparison of 99mTc-EDDA/HYNIC-TOC with 111In-DTPA-octreotide for diagnosis of somatostatin receptor-expressing tumors. J Nucl Med 2003;44:708-16.
  • 11 Oberg K, Akerström G, Rindi G, Jelic S, ESMO Guidelines Working Group. Neuroendocrine gastroenteropancreatic tumours: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2010;21:v223-7.
  • 12 Hofmann M, Maecke H, Börner R, Weckesser E, Schöffski P, Oei L, et al. Biokinetics and imaging with the somatostatin receptor PET radioligand (68) Ga-DOTATOC: Preliminary data. Eur J Nucl Med 2001;28:1751-7.
  • 13 Dromain C, de Baere T, Lumbroso J, Caillet H, Laplanche A, Boige V, et al. Detection of liver metastases from endocrine tumors: A prospective comparison of somatostatin receptor scintigraphy, computed tomography, and magnetic resonance imaging. J Clin Oncol 2005;23:70-8.
  • 14 Gabriel M, Decristoforo C, Kendler D, Dobrozemsky G, Heute D, Uprimny C, et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: Comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 2007;48:508-18.
  • 15 Garin E, Le Jeune F, Devillers A, Cuggia M, de Lajarte-Thirouard AS, Bouriel C, et al. Predictive value of 18F-FDG PET and somatostatin receptor scintigraphy in patients with metastatic endocrine tumors. J Nucl Med 2009;50:858-64.
  • 16 Intenzo CM, Jabbour S, Lin HC, Miller JL, Kim SM, Capuzzi DM, et al. Scintigraphic imaging of body neuroendocrine tumors. Radiographics 2007;27:1355-69.
  • 17 Oh S, Prasad V, Lee DS, Baum RP. Effect of Peptide Receptor Radionuclide Therapy on Somatostatin Receptor Status and Glucose Metabolism in Neuroendocrine Tumors: Intraindividual Comparison of Ga-68 DOTANOC PET/CT and F-18 FDG PET/CT. Int J Mol Imaging 2011;2011:524130.
  • 18 Kulke MH, Siu LL, Tepper JE, Fisher G, Jaffe D, Haller DG, et al. Future directions in the treatment of neuroendocrine tumors: Consensus report of the National Cancer Institute Neuroendocrine Tumor clinical trials planning meeting. J Clin Oncol 2011;29:934-43.