CC BY-NC-ND 4.0 · Indian J Radiol Imaging 2016; 26(03): 397-401
DOI: 10.4103/0971-3026.190414
Musculoskeletal

Holding versus seeing pathology. Three-dimensional printing of the bony pelvis for preoperative planning of a complex pelvis fracture: A case report

Parang S Sanghavi
Department of Radiodiagnosis, Jankharia Imaging Centre, Mumbai, Maharashtra, India
,
Bhavin G Jankharia
Department of Radiodiagnosis, Jankharia Imaging Centre, Mumbai, Maharashtra, India
› Author Affiliations
Financial support and sponsorship Nil.

Abstract

Pelvic injuries are not uncommon. The complex anatomy of the pelvic bones, the complex pattern of injuries, associated important structures such as neurovascular bundles, and difficult access make the reduction and fixation of these fractures difficult. Often the surgical outcomes are not satisfactory. Three-dimensional (3D) imaging using computed tomography (CT) scan (3DCT) has been the mainstay of preoperative evaluation since the 1980s, however, even with these images it may be difficult to understand complex injury patterns. Preoperative printing of a 3D model using the same CT scan data allows surgeons to hold the pelvis in their hands and then plan appropriate treatment. We report one such case of complex pelvic injury and its management using the novel method of preoperative 3D model printing.



Publication History

Article published online:
30 July 2021

© 2016. Indian Radiological Association. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • References

  • 1 Demetriades D, Karaiskakis M, Toutouzas K, Alo K, Velmahos G, Chan L. Pelvic fractures: Epidemiology and predictors of associated abdominal injuries and outcomes. J Am CollSurg 2002;195:1-10.
  • 2 Jankharia B, Shroff M, Shah S. Three-dimensional computed tomography in acetabular trauma. Ind J RadiolImag 1992;2:97-106.
  • 3 Starosolski ZA, Kan JH, Rosenfeld SD, Krishnamurthy R, Annapragada A. Application of 3-D printing (rapid prototyping) for creating physical models of pediatricorthopedic disorders. PedRadiol 2014;44:216-21.
  • 4 Hurson C, Tansey A, O'Donnchadha B, Nicholson P, Rice J, McElwain J. Rapid prototyping in the assessment, classification and preoperative planning of acetabular fractures. Injury 2007;38:1158-62.
  • 5 McLaren AC, Rorabeck CH, Halpenny J. Long-term pain and disability in relation to residual deformity after displaced pelvic ring fractures. Canadian J Surg 1990;33:492-4.
  • 6 Poole GV, Ward EF, Griswold JA, Muakkassa FF, Hsu HS. Complications of pelvic fractures from blunt trauma. Am Surg 1992;58:225-31.
  • 7 Esses SJ, Berman P, Bloom AI, Sosna J. Clinical applications of physical 3D models derived from MDCT data and created by rapid prototyping. AJR Am J Roentgenol2011;196:W683-8.
  • 8 D'Urso PS, Barker TM, Earwaker WJ, Bruce LJ, Atkinson RL, Lanigan MW, et al. Stereolithographicbiomodelling in cranio-maxillofacial surgery: A prospective trial. J CranioMaxFacialSurg 1999;27:30-7.
  • 9 Karayazgan-Saracoglu B, Gunay Y, Atay A. Fabrication of an auricular prosthesis using computed tomography and rapid prototyping technique. J CraniofacSurg 2009;20:1169-72.
  • 10 Rose AS, Kimbell JS, Webster CE, Harrysson OL, Formeister EJ, Buchman CA. Multi-material 3D Models for temporal bone surgical simulation. Ann OtolLaryngolRhinol 2015;124:528-36.
  • 11 Maravelakis E, David K, Antoniadis A, Manios A, Bilalis N, Papaharilaou Y. Reverse engineering techniques for cranioplasty: A case study. J Med EngTechnol 2008;32:115-21.
  • 12 Muller A, Krishnan KG, Uhl E, Mast G. The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery. J CraniofacSurg 2003;14:899-914.
  • 13 Schievano S, Migliavacca F, Coats L, Khambadkone S, Carminati M, Wilson N, et al. Percutaneous pulmonary valve implantation based on rapid prototyping of right ventricular outflow tract and pulmonary trunk from MR data. Radiology 2007;242:490-7.
  • 14 Fredieu J, Kerbo J, Herron M, Klatte R, Cooke M. Anatomical Models: A Digital Revolution. Medical science educator 2015;25:183-94.
  • 15 Stephens B, Azimi P, El Orch Z, Ramos T. Ultrafine particle emissions from desktop 3D printers. Atmos Environ 2013;79:334-9.