CC BY-NC-ND 4.0 · Indian J Radiol Imaging 2006; 16(03): 285-292
DOI: 10.4103/0971-3026.28997
Original Article

Comparison of cardiac MR and 99mtc Sestamibi Spect in the evaluation of myocardial perfusion and viability in coronary artery disease

A Kapoor
Department of cardiovascular radiology, Advanced Diagnostics, 17/8 Kennedy Avenue, Amritsar 143001 Punjab
,
A Khanna
Department of cardiovascular radiology, Advanced Diagnostics, 17/8 Kennedy Avenue, Amritsar 143001 Punjab
,
S Bhatia
Department of cardiology, Advanced Diagnostics, 17/8 Kennedy Avenue, Amritsar 143001 Punjab
,
G Mahajan
Department of cardiovascular radiology, Advanced Diagnostics, 17/8 Kennedy Avenue, Amritsar 143001 Punjab
,
A Kapoor
Department of cardiovascular radiology, Advanced Diagnostics, 17/8 Kennedy Avenue, Amritsar 143001 Punjab
,
R Kapoor
Department of cardiology, Advanced Diagnostics, 17/8 Kennedy Avenue, Amritsar 143001 Punjab
› Author Affiliations

Abstract

Objective - The present study was designed to compare the role of 99mTc sestamibi sciintigraphy (SPECT) and cardiac MR (CMR) in the detection of viable myocardium and to delineate myocardial scar tissue in patients with established chronic ischemic heart disease. Methods - Thirty six patients with established chronic ischemic heart disease on coronary angiograms which was the gold standard underwent both stress CMR and 99mTc sestamibi studies. Out of these 11 patients who had reduced end diastolic thickness < 5.5mm alongwith wall motion abnormalities also underwent dobutamine MR (DMR) for determining the contractile myocardial reserve. Results- Both CMR and SPECT showed a good correlation in the detection of perfusion defects (r=0.89) with the diagnostic region of operating characteristics being 0.97. The sensitivity and specificity of SPECT to detect perfusion defects were 82.6% and 90.4% respectively. In comparison CMR had a sensitivity, specificity of 92.8% and 98.2% respectively in identifying such defects.It was also superior in defining transmural infarcts(TMI) with sensitivity being 100% vs 79.3% of SPECT (p=< 0.0001) and all the 10 segments with TMI showed irreversible myocardial dysfunction on DMR. This was the only imaging parameter that indicated myocardial non viability with a specificity of 100%. Conclusions - CMR is a useful diagnostic tool in the evaluation of patients with chronic myocardial ischemia and is superior to SPECT in the detection and quantification of myocardial infarctions. Demonstration of a TMI on CMR is a finding strongly associated with non viability of the myocardium and may preclude the need for doing a DMR in such cases.



Publication History

Article published online:
02 August 2021

© 2006. Indian Radiological Association. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/.)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Desmarais RL, Kaul S, Watson DD. Do false positive thallium-201 scans lead to unnecessary catheterization? Outcome of patients with perfusion defects on quantitative planar thallium-201 scintigraphy. J Am Coll Cardiol 1993; 21: 1058-1063.
  • 2 Reeder SB, Du YP, Lima JAC, Bluemke DA. Advanced Cardiac MR Imaging of Ischemic Heart Disease. Radiographics. 2001;21:1047-1074.
  • 3 Kim RJ, Chen EL, Lima JAC, Judd RM. Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation. 1996; 94: 3318-3326.
  • 4 Simonetti OP, Kim RJ, Fieno DS, Hillenbrand HB, Wu E, Bundy JM. An improved MR imaging technique for the visualization of myocardial infarction. Radiology, 2001; 218: 215-223.
  • 5 Fieno DS, Kim RJ, Chen EL,Lomasney JW, KlockeFJ, Judd RM. Contrast-enhanced magnetic resonance imaging of myocardium at risk:Distinction between reversible and irreversible injury throughout infarct healing. J Am Coll Cardiol. 2000; 36: 1985-1991.
  • 6 Saadi AN, Nagel E, Gross M. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 2000; 101:1379-1383.
  • 7 Regenfus M, Schulndt C, von Erffa J. Assessment of myocardial viability in patients with left ventricular dysfunction after myocardial infarction using contrast-enhanced magnetic resonance imaging: Comparison to thallium SPECT. Circulation. 2002; 106:II-388.
  • 8 Holly TA, Parker MA, Hendel RC. The prevalence of non-uniform soft tissue attenuation in myocardial SPECT perfusion imaging and the impact of gated SPECT (abstr). J Nucl Cardiol 1997; 4:S103.
  • 9 DePuey EG, Rozanski A. Using gated technetium-99m-sestamibi SPECT to characterize fixed myocardial defects as infarct or artifact. J Nucl Med 1995; 36: 952-955.
  • 10 Dogruca Z, Kabasakal L, Yapar F, Nisil C, Vural VA, Onsel O. A comparison of Tl-201 stress-reinjection-prone SPECT and Tc-99m-sestamibi gated SPECT in the differentiation of inferior wall defects from artifacts. Nucl Med Commun 2000; 21: 719-727.
  • 11 DePuey EG, Garcia EV. Optimal specificity of thallium-201 SPECT through recognition of imaging artifacts. J Nucl Med 1989; 30:441-449.
  • 12 Kim RJ, Fieno DS, Parrish TB,Harris K,Chen E,Simonetti O,Bundy J. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999; 100:1992-2002.
  • 13 Wagner A, Mahrholdt H, Holly TA,Elliot MD, Regenfus M, Parker M. Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts:an imaging study. Lancet 2003; 361: 374-379.
  • 14 Kim RJ, Chen EL, Lima JA,Judd RM.. Myocardial Gd-DTPA kinetics determine MRI Contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation1996; 94: 3318-3326.
  • 15 Kim RJ, Wu E, Rafael A,Chen EL,ParkerMA, Simonetti O. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000; 343: 1445-1453.
  • 16 Gerber B L, Garot J, Bluemke DA,Wu KC, Lima JA..Accuracy of contrast-enhanced magnetic resonance imaging in predicting improvement of regional myocardial function in patients after acute myocardial infarction. Circulation .2002;106:1083-1089.
  • 17 Gersh BJ, Anderson JL. Thrombolysis and myocardial salvage: results of clinical trials and the animal paradigm-paradoxic or predictable? Circulation .1993;88:296-306.
  • 18 Bonow RO. The hibernating myocardium: implications for management of congestive heart failure. Am J Cardiol. 1995;75: 17A-25A.
  • 19 Lee VS, Resnick D ,Tiu. ST, Sger J, Nazzaro CA, Israel GM, Simonetti OP. MR Imaging Evaluation ofMyocardial Viability in the Setting of Equivocal SPECT Results with 99Tcm Sestamibi. Radiology. 2004; 230:191-197.
  • 20 Klein C, Nekolla SG, Bengel FM, Momose M, Sammer A, Hass F. Assessment of Myocardial Viability with Contrast-enhanced Magnetic Resonance Imaging. Circulation.2002;105:162.