Subscribe to RSS
![](/products/assets/desktop/img/oa-logo.png)
DOI: 10.4103/0971-3026.85369
Novel positron emission tomography radiotracers in brain tumor imaging
![](https://www.thieme-connect.de/media/10.1055-s-00050590/201103/lookinside/thumbnails/10_4103_0971-3026_85369_202-1.jpg)
Abstract
Although [18F] 2-fluoro-2-deoxy-D-glucose (FDG) is the most widely used radiopharmaceutical the world over, it is not the ideal tracer for brain imaging, owing to its high physiological cortical uptake and lack of specificity. This has paved the way for the introduction of several novel radiotracers, each with their own inherent strengths and limitations. We present the insights gained from the use of these radiotracers at our institution.
Publication History
Article published online:
30 July 2021
© 2011. Indian Radiological Association. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India
-
References
- 1 Patronas NJ, Chiro G, Brooks RA, DeLaPaz RL, Kornblith PL, Smith BH, et al. Work in progress: [18F] fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brain. Radiology 1982;144:885-9.
- 2 Hicks RJ. Beyond FDG: Novel PET tracers for cancer imaging. Cancer Imaging 2004;4:22-4.
- 3 Kracht LW, Miletic H, Busch S, Jacobs AH, Voges J, Hoevels M, et al. Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: Local comparison with stereotactic histopathology. Clin Cancer Res 2004;10:7163-71.
- 4 Jager PL, Vaalburg W, Pruim J, Vries EG, Langen KJ, Piers DA. Radiolabeled amino acids: Basic aspects and clinical applications in oncology. J Nucl Med 2001;42:432-45.
- 5 Galldiks N, Kracht LW, Berthold F, Miletic H, Klein JC, Herholz K, et al. [11C]-L-Methionine positron emission tomography in the management of children and young adults with brain tumors. J Neurooncol 2010;96:231-9.
- 6 Kato T, Shinoda J, Nakayama N, Miwa K, Okumura A, Yano H, et al. Metabolic assessment of gliomas using 11C-methionine, [18F] fluorodeoxyglucose, and 11C-choline positron-emission tomography. Am J Neuroradiol 2008;29:1176-82.
- 7 Tai YF, Piccini P. Applications of positron emission tomography (PET) in neurology. J Neurol Neurosurg Psychiatry 2004;75:669-76.
- 8 Tsuyuguchi N, Sunada I, Ohata K, Iwai Y, Yamanaka K, Tanaka K, et al. Evaluation of treatment effects in brain abscess with positron emission tomography: Comparison of fluorine-18-fluorodeoxyglucose and carbon-11-methionine. Ann Nucl Med 2003;17:47-51.
- 9 Shiue CY, Welch MJ. Update on PET radiopharmaceuticals: Life beyond fluorodeoxyglucose. Radiol Clin North Am 2004;42:1033-53.
- 10 Chen W, Silverman DH, Delaloye S, Czernin J, Kamdar N, Pope W, et al. 18F-FDOPA PET imaging of brain tumors: Comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 2006;47:904-11.
- 11 Yee RE, Cheng DW, Huang SC, Namavari M, Satyamurthy N, Barrio JR. Blood brain barrier and neuronal membrane transport of 6-[F-18]flouro-L-DOPA. Biochem Pharmacol 2001;62:1409-15.
- 12 Pauleit D, Floeth F, Hamacher K, Riemenschneider MJ, Reifenberger G, Muller HW, et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 2005;128:678-87.
- 13 Nalaf V, Kerrou K, Balogova S, Pene F, Huchet V, Gutman F, et al. Fluoroethyltyrosine 18F PET in the detection of brain tumors. Bull Cancer 2010;97:495-506.
- 14 Mankoff DA, Shields AF, Krohn KA. PET imaging of cellular proliferation. Radiol Clin North Am 2005;43:153-67.
- 15 Yap CS, Czernin J, Fishbein MC, Cameron RB, Schiepers C, Phelps ME, et al. Evaluation of thoracic tumors with 18F-fluorothymidine and 18F-fluorodeoxyglucose-positron emission tomography. Chest 2006;129:393-401.
- 16 Ohtani T, Kurihara H, Ishiuchi S, Saito N, Oriuchi N, Inoue T, et al. Brain tumor imaging with carbon-11 choline: Comparison with FDG PET and gadolinium-enhanced MR imaging. Eur J Nucl Med 2001;28:1664-70.
- 17 Kato T, Shinoda J, Nakayama N, Miwa K, Okumura A, Yano H, et al. Metabolic assessment of gliomas using 11C-methionine, [18F] fluorodeoxyglucose, and 11C-choline positron-emission tomography. Am J Neuroradiol 2008;29:1176-82.
- 18 Nunn A, Linder K, Strauss HW. Nitroimidazoles and imaging hypoxia. Eur J Nucl Med 1995;22:265-80.
- 19 Imam SK. Review of positron emission tomography tracers for imaging of tumor hypoxia. Cancer Biother Radiopharm 2010;25:365-74.
- 20 Szeto MD, Chakraborty G, Hadley J, Rockne R, Muzi M, Alvord EC, et al. Quantitative metrics of net proliferation and invasion link biological aggressiveness assessed by MRI with hypoxia assessed by FMISO-PET in newly diagnosed glioblastomas. Cancer Res 2009;69:4502-9.