CC BY-NC-ND 4.0 · J Lab Physicians 2012; 4(01): 024-029
DOI: 10.4103/0974-2727.98666
Original Article

Prevalence and Characterization of Diarrheagenic Escherichia coli Isolated from Adults and Children in Mangalore, India

Veena A Shetty
Department of Microbiology, K.S. Hegde Medical Academy, Nitte University Deralakatte, India
,
Sanath H Kumar
Department of Fishery Microbiology, Karnataka Veterinary, Animal and Fisheries Sciences University, College of Fisheries, Mangalore, India
,
Avinash K Shetty
Department of Pediatrics, Wake Forest University Health Sciences, Winston-Salem, NC, USA
,
Iddya Karunasagar
Department of Fishery Microbiology, Karnataka Veterinary, Animal and Fisheries Sciences University, College of Fisheries, Mangalore, India
,
Indrani Karunasagar
Department of Fishery Microbiology, Karnataka Veterinary, Animal and Fisheries Sciences University, College of Fisheries, Mangalore, India
› Institutsangaben
Source of Support: This work was supported by research grants from the Department of Biotechnology, Government of India and K.S.Hegde Medical Academy, Nitte University Deralakatte.

ABSTRACT

Background: Diarrheal diseases are a major cause of morbidity and mortality in resource-limited countries. Among the bacterial pathogens, diarrheagenic E. coli (DEC) are most frequently implicated in cases of epidemic and endemic diarrhea worldwide. The objective of this study was to determine the prevalence of DEC in stool specimens from patients with acute diarrhea using polymerase chain reaction (PCR).

Materials and Methods: Escherichia coli stool samples were collected from 115 hospitalized children and adults with acute diarrhea in Mangalore, a coastal city, in southern India. PCR amplification of eae, bfp, stx, ehx genes were used for detection of enteropathogenic (EPEC) and shigatoxigenic E. coli (STEC), lt and st genes were used for enterotoxigenic E. coli (ETEC) and astA gene for enteroaggregative E. coli (EAEC).

Results: During the 24 month study period, of the 115 stool samples, DEC type was detected in 20 (17.4%) using the PCR method. The most prevalent DEC was atypical EPEC accounting for 12 (10.4%) cases followed by 4 cases of EAEC (3.4%) and 4 of STEC (3.4%). No ETEC strains were isolated from any of the examined stool samples.

Conclusion: This study suggests that the atypical EPEC are the newly emerging group among DEC stains in Southern India. Further studies are needed to evaluate the epidemiology and virulence properties of atypical EPEC strains.



Publikationsverlauf

Artikel online veröffentlicht:
09. Mai 2020

© 2012.

Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • REFERENCES

  • 1 Bryce J, Boschi-Pinto C, Shibuya K, Black RE. WHO Child Health Epidemiology Reference Group. WHO estimates of the causes of death in children. Lancet 2005;365:1147-52.
  • 2 Kaper JB, Nataro, JP, Mobley LT. Pathogenic Escherichia coli. Nat Rev Microbiol 2004;2:123-40.
  • 3 Bischoff C, Luthy J, Altwegg M, Baggi F. Rapid detection of DEC by real-time PCR. J Microbiol Methods 2005;61:335-41.
  • 4 Trabulsi LR, Keller R, Tardelli Gomes TA. Typical and atypical enteropathogenic Escherichia coli. Emerg Infect Dis 2002;8:508-13.
  • 5 Danashree B, Mallya PS. Detection of shiga-toxigenic Escherichia coli (STEC) diarrhoeagenic stool and meat samples in Mangalore, India. Indian J Med Res 2008;128:271-7.
  • 6 Wani SA, Nabi A, Fayaz I, Ahmad I, Nishikawa Y, Qureshi K, et al. Investigation of diarrhoeic faecal samples for enterotoxigenic Shiga toxin-producing and typical or atypical enteropathogenic Escherichia coli in Kashmir, India. FEMS Microbiol Lett 2006;261:238-44.
  • 7 Ausubel FM, Brent R, Kingston RE, Moore DD, Seidaman JG, Smith JA, et al. Short protocols in molecular biology. New York: John Wiley & Sons; 1995. p. 2-11.
  • 8 Paton A W and Paton J C. Detection and characterization of Shiga toxigenic Escherichia coli by using multiplex PCR assays for stx1, stx2, eaeA, enterohemorrhagic E. coli hlyA, rfb0111 and rfb0157 . J Clin Microbiol 1998;36:598-602.
  • 9 Yatsuyanagi J, Saito S, Sato H, Miyajima Y, Amano K, Enomoto K. Characterization of enteropathogenic and enteroaggregative Escherichia coli isolated from diarrheal outbreak. J Clin Microbiol 2002;40:294-7.
  • 10 Lin Z, Kurazono H, Yamasakiand S, Takeda Y. Detection of various variant verotoxin genes in Escherichia coli by polymerase chain reaction. Microbiol Immunol 1993;37:543-8.
  • 11 Fagan PK, Hornitzky MA, Bettelheim KA, Djordjevic SP. Detection of Shiga-Like Toxin (stx1 and stx2 ), Intimin (eaeA), and enterohemorrhagic Escherichia coli (EHEC) Hemolysin (EHEC hlyA) genes in animal feces by multiplex PCR. Appl Environ Microbiol 1999;65:868-72.
  • 12 Fratamico PM, Sackitey SK, Wiedmann M, Deng MY. Detection of Escherichia coli O157:H7 by multiplex PCR. J Clin Microbiol 1995;33:2188-91.
  • 13 Schultsz C, Pool GJ, van Ketel R, de Wever B, Speelman P, Dankert J. Detection of enterotoxigenic Escherichia coli in stool samples by using non-radioactively labeled oligonucleotide DNA probes and PCR. J Clin Microbiol 1994;32:2393-7.
  • 14 Olsvik O, Strockbine NA. PCR detection of heat-stable, heat-labile, and Shiga-like toxin genes in Escherichia coli. In: Persing DH, Smith TF, Tenover FC, White TJ, editors. Diagnostic molecular microbiology: Principles and applications. Rochester, NY: Mayo Foundation; 1993. p. 271-6.
  • 15 Gunzburg ST, Tornieporth NG, Riley LW. Identification of enteropathogenic Escherichia coli by PCR- Based detection of the bundle forming pilus gene. J Clin Microbiol 1995;33:1375-7.
  • 16 Yamasaki S, Lin Z, Shirai H, Terai A, Oku Y, Ito H, et al. Typing of verotoxins by DNA colony hybridization with poly- and oligo- nucleotide probes, a bead-enzyme-linked immunosorbent assay, and polymerase chain reaction. Microbial Immunol 1996;40:345-52.
  • 17 Baba A, Ebuchi S, Uryu K, Hiwaki H, Ogata K, Washimi E, et al. An outbreak of water borne gastroenteritis caused by diarrheagenic Escherichia coli possessing eae gene. Jpn J Infect Dis 2006;59:59-60.
  • 18 Sehgal R, Kumar Y, Kumar S. Prevalence and geographical distribution of Escherichia coli 0157:H7 in India: A 10-year survey. Trans R Soc Trop Med Hyg 2008;102:380-3.
  • 19 Franzolin MR, Alves RC, Keller R, Gomes TA, Beutin L, Barreto ML, et al. Prevalence of diarrheagenic Escherichia coli in children with diarrhea in Salvador, Bahia, Brazil. Mem Inst Oswaldo Cruz 2005;100:359-63.
  • 20 Raju B, Ballal M. Multidrug resistant enteroaggregative Escherichia coli diarrhea in rural southern Indian population. Scand J Infect Dis 2009;41:105-8.