CC BY-NC-ND 4.0 · South Asian J Cancer 2017; 06(01): 031-034
DOI: 10.4103/2278-330X.202556
ORIGINAL ARTICLE: Diagnostics in Oncology

Comparative evaluation of iodine-131 metaiodobenzylguanidine and 18-fluorodeoxyglucose positron emission tomography in assessing neural crest tumors: Will they play a complementary role?

Soumyakanti Kundu
Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre, Mumbai, Maharashtra, India
,
Purushottam Kand
Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre, Mumbai, Maharashtra, India
,
Sandip Basu
Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre, Mumbai, Maharashtra, India
› Institutsangaben
Source of Support: Nill.

Abstract

Background: 18-Fluorodeoxyglucose positron emission tomography (FDG-PET) has established a role in the evaluation of several malignancies. However, its precise clinical role in the neural crest cell tumors continues to evolve. Purpose: The purpose of this study was to compare iodine-131 metaiodobenzylguanidine (131I-MIBG) and FDG-PET of head to head in patients with neural crest tumors both qualitatively and semiquantitatively and to determine their clinical utility in disease status evaluation and further management. Materials and Methods: A total of 32 patients who had undergone 131I-MIBG and FDG-PET prospectively were evaluated and clinicopathologically grouped into three categories: neuroblastoma, pheochromocytoma, and medullary carcinoma thyroid. Results: In 18 patients of neuroblastoma, FDG PET and 131I-MIBG showed patient-specific sensitivity of 84% and 72%, respectively. The mean maximum standardized uptake value (SUVmax) of primary lesions in patients with unfavorable histology was found to be relatively higher than those with favorable histology (5.18 ± 2.38 vs. 3.21 ± 1.69). The mean SUVmaxof two common sites (posterior superior iliac spine [PSIS] and greater trochanter) was higher in patients with involved marrow than those with uninvolved one (2.36 and 2.75 vs. 1.26 and 1.34, respectively). The ratio of SUVmaxof the involved/contralateral normal sites was 2.16 ± 1.9. In equivocal bone marrow results, the uptake pattern with SUV estimation can depict metastatic involvement and help in redirecting the biopsy site. Among seven patients of pheochromocytoma, FDG-PET revealed 100% patient-specific sensitivity. FDG-PET detected more metastatic foci than 131I-MIBG (18 vs. 13 sites). In seven patients of medullary carcinoma thyroid, FDG-PET localized residual, recurrent, or metastatic disease with much higher sensitivity (32 metastatic foci with 72% patient specific sensitivity) than 131I-MIBG, trending along the higher serum calcitonin levels. Conclusions: FDG-PET is not only a good complementary modality in the management of neural crest cell tumors but also it can even be superior, especially in cases of 131I-MIBG nonavid tumors.



Publikationsverlauf

Artikel online veröffentlicht:
22. Dezember 2020

© 2017. MedIntel Services Pvt Ltd. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. https://creativecommons.org/licenses/by-nc-nd/4.0/.

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Maguire LH, Thomas AR, Goldstein AM. Tumors of the neural crest: Common themes in development and cancer. Dev Dyn 2015;244:311-22.
  • 2 Rosai J. The origin of neuroendocrine tumors and the neural crest saga. Mod Pathol 2011;24 Suppl 2:S53-7.
  • 3 Basu S, Abhyankar A, Jatale P. The current place and indications of 131I-metaiodobenzylguanidine therapy in the era of peptide receptor radionuclide therapy: Determinants to consider for evolving the best practice and envisioning a personalized approach. Nucl Med Commun 2015;36:1-7.
  • 4 Shulkin BL, Hutchinson RJ, Castle VP, Yanik GA, Shapiro B, Sisson JC. Neuroblastoma: Positron emission tomography with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose compared with metaiodobenzylguanidine scintigraphy. Radiology 1996;199:743-50.
  • 5 Shimada H, Ambros IM, Dehner LP, Hata J, Joshi VV, Roald B, et al. The International Neuroblastoma Pathology Classification (the Shimada System) Cancer 1999;86:364-72.
  • 6 Tanabe M, Ohnuma N, Iwai J, Yoshida H, Takahashi H, Maie M, et al. Bone marrow metastasis of neuroblastoma analyzed by MRI and its influence on prognosis. Med Pediatr Oncol 1995;24:292-9.
  • 7 Papaioannou G, McHugh K. Neuroblastoma in childhood: Review and radiological findings. Cancer Imaging 2005;5:116-27.
  • 8 DuBois SG, Kalika Y, Lukens JN, Brodeur GM, Seeger RC, Atkinson JB, et al. Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. J Pediatr Hematol Oncol 1999;21:181-9.
  • 9 Shulkin BL, Thompson NW, Shapiro B, Francis IR, Sisson JC. Pheochromocytomas: Imaging with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose PET. Radiology 1999;212:35-41.
  • 10 Brandt-Mainz K, Müller SP, Görges R, Saller B, Bockisch A. The value of fluorine-18 fluorodeoxyglucose PET in patients with medullary thyroid cancer. Eur J Nucl Med 2000;27:490-6.
  • 11 Ong SC, Schöder H, Patel SG, Tabangay-Lim IM, Doddamane I, Gönen M, et al. Diagnostic accuracy of 18F-FDG PET in restaging patients with medullary thyroid carcinoma and elevated calcitonin levels. J Nucl Med 2007;48:501-7.