Subscribe to RSS
![](/products/assets/desktop/img/oa-logo.png)
DOI: 10.4103/2278-9626.112309
Comparative analysis of adhesive failure of orthodontic resins: An in vitro mechanical test with the finite element method
![](https://www.thieme-connect.de/media/10.1055-s-00051518/201302/lookinside/thumbnails/10-4103-2278-9626-112309_112309-1.jpg)
Abstract
Objective: The purpose of this study was to validate finite element (FE) method as a reliable adhesive shear strength test method by investigating and comparing the results from in vitro mechanical tests and 3-D FE simulations. Materials and Methods: Four groups of teeth (n=15) using Transbond XT (3M Unitek, Monrovia, CA) and Enlight Ormco (Glendora, CA) with metallic and ceramic brackets (Twin-Edge and InVu, TP Orthodontics, Inc., La Porte, IN) were obtained and submitted to shear bond strength tests. Subsequently, an equivalent geometric model was subjected to FE modeling analysis. ANOVA tests indicated a statistically significant difference (P<0.05) between the shear bond strength of the two bracket types regardless of the resin, and there was no interaction between the resin and bracket type. Results: FE analysis showed the stress distribution in the adhesive layer and revealed an increased stress distribution in the ceramic brackets. These results were consistent with in vitro detachment experiments. Conclusions: This study establishes that FE sub-modeling can be used to simulate adhesive resistance.
Publication History
Article published online:
01 November 2021
© 2013. European Journal of General Dentistry. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/.)
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
-
References
- 1 Buonocore MG. A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J Dent Res 1955;34:849-53.
- 2 Swift EJ Jr, Perdigão J, Heymann HO. Bonding to enamel and dentin: A brief history and state of the art, 1995. Quintessence Int 1995;26:95-110.
- 3 Saito K, Sirirungrojying S, Meguro D, Hayakawa T, Kasai K. Bonding durability of using self-etching primer with 4-META/MMA-TBB resin cement to bond orthodontic brackets. Angle Orthod 2005;75:260-5.
- 4 Finnema KJ, Ozcan M, Post WJ, Ren Y, Dijkstra PU. In-vitro orthodontic bond strength testing: A systematic review and meta-analysis. Am J Orthod Dentofacial Orthop 2010;137:615-22.
- 5 Hioki M, Shin-Ya A, Nakahara R, Vallittu PK, Nakasone Y, Shin-Ya A. Shear bond strength and FEM of a resin-modified glass ionomer cement - Effects of tooth enamel shape and orthodontic bracket base configuration. Dent Mater J 2007;26:700-7.
- 6 Lavernhe P, Estivalezes E, Lachaud F, Lodter C, Piquet R. Orthodontic bonding: Finite element for standardized evaluations. Int J Adhes 010;30:21-9.
- 7 Wiltshire W, Noble J. Clinical and laboratory perspectives of improved orthodontic bonding to normal, hypoplastic, and fluorosed enamel. Semin Orthod 2010;6:55-65.
- 8 Lin CL, Huang SF, Tsai HC, Chang WJ. Finite element sub-modeling analyses of damage to enamel at the incisor enamel/adhesive interface upon de-bonding for different orthodontic bracket bases. J Biomech 2011;44:134-42.
- 9 Sharma-Sayal SK, Rossouw PE, Kulkarni GV, Titley KC. The influence of orthodontic bracket base design on shear bond strength. Am J Orthod Dentofacial Orthop 2003;124:74-82.
- 10 Fox NA, McCabe JF, Buckley JG. A critical of bond strength testing in orthodontics. Br J Orthod 1994;21:33-43.
- 11 Brantley WA, Eliades T. Orthodontic Materials: Scientific and Clinical Aspects. Stuttgart, Germany: Thieme; 2001:84-9.
- 12 Katona TR. A comparison of the stresses developed in tension, shear peel, and torsion strength testing of direct bonded orthodontic brackets. Am J Orthod Dentofacial Orthop 1997;112:244-51.
- 13 Katona TR, Moore BK. The effects of load misalignment on tensile load testing of direct bonded orthodontic brackets - A finite element model. Am J Orthod Dentofacial Orthop 1994;105:543-51.
- 14 DeHoff PH, Anusavice KJ, Wang Z. Three-dimensional finite element analysis of the shear bond test. Dent Mater 1995;11:126-31.
- 15 Knox J, Kralj B, Hübsch PF, Middleton J, Jones ML. An evaluation of the influence of orthodontic adhesive on the stresses generated in a bonded bracket finite element model. Am J Orthod Dentofacial Orthop 2001;119:43-53.
- 16 Scherrer SS, Cesar PF, Swain MV. Direct comparison of the bond strength results of the different test methods: A critical literature review. Dent Mater 2010;26:e78-93.
- 17 Lotti RS, Machado AW, Mazzieiro ËT, Landre JJr. Scientific application of finite element method.Dental Press J Orthod 2006;11:35-43.
- 18 Ghosh J, Nanda RS, Duncanson MG Jr, Currier GF. Ceramic bracket design: An analysis using the finite element method. Am J Orthod Dentofacial Orthop 1995;108:575-82.
- 19 Knox J, Jones ML, Hubsch P, Middleton J, Kralj B. An evaluation of the stresses generated in a bonded orthodontic attachment by three different load cases using the finite element method of stress analysis. J Orthod 2000;27:39-46.
- 20 International Organization of Standardization. Dental materials: Testing of adhesion to tooth structure. ISO/TS 11405: 2003.
- 21 International Standards Organization. Amendment ISO 10477. Dentistry-Polymer-Based Crown and Bridge Materials. Geneva: ISO; 1996.
- 22 Lin CC, Versluis A, Douglas WH. Failure criteria of dentin-resin adhesion-a mixed mode fracture mechanics approach. Scrip Mater 2000;42:327-33.
- 23 Liu HL, Lin CL, Sun MT, Chang YH. 3D micro-crack propagation simulation at enamel/adhesive interface using FE submodeling and element death techniques. Ann Biomed Eng 2010;38:2004-12.
- 24 Viana CP, Mazzieiro ET, Júnior J. The influence of the variation of the bracket base curvature in a bonded orthodontic attachment submitted by different load cases using the finite element method. Dental Press J Orthod 2007;77:75-86.
- 25 Scougall-Vilchis RJ, Zárate-Díaz C, Kusakabe S, Yamamoto K. Bond strengths of different orthodontic adhesives after enamel conditioning with the same self-etching primer. Aust Orthod J 2010;26:84-9.
- 26 Viazis AD, Cavanaugh G, Bevis RR. Bond strength of ceramic brackets under shear stress: An in vitro report. Am J Orthod Dentofacial Orthop 1990;98:214-21.
- 27 Kitahara-Céia FM, Mucha JN, Marques dos Santos PA. Assessment of enamel damage after removal of ceramic brackets. Am J Orthod Dentofacial Orthop 2008;134:548-55.
- 28 Reynolds IR. A review of direct orthodontic bonding. British J Orthod 1975;2:171-8.
- 29 Maijer R, Smith DC. Variables influencing the bond strength of metal orthodontic bracket bases. Am J Orthod 1981;79:20-34.
- 30 Wakabayashi N, Ona M, Suzuki T, Igarashi Y. Nonlinear finite element analyses: Advances and challenges in dental applications. J Dent 2008;36:463-71.
- 31 Karamouzos A, Athanasiou AE, Papadopoulos MA. Clinical characteristics and properties of ceramic brackets: A comprehensive review. Am J Orthod Dentofacial Orthop 1997;112:34-40.
- 32 Klocke A, Kahl-Nieke B. Influence of force location in orthodontic shear bond strength testing. Dent Mater 2005;21:391-6.
- 33 Liu JK, Chuang SF, Chang CY, Pan YJ. Comparison of initial shear bond strengths of plastic and metal brackets. Eur J Orthod 2004;26:531-4.
- 34 Hollister SJ, Fyhrie DP, Jepsen KJ, Goldstein SA. Application of homogenization theory to the study of trabecular bone mechanics. J Biomech 1991;24:825-39.