CC BY-NC-ND 4.0 · European Journal of General Dentistry 2016; 5(03): 111-114
DOI: 10.4103/2278-9626.189255
Original Article

Surface roughness of restorative materials after immersion in mouthwashes

Lauren Oliveira Lima Bohner
1   Department of Prosthodontics, School of Dentistry, University of São Paulo, Brazil
2   Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo, Brazil
,
Ana Paula Terossi de Godoi
2   Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo, Brazil
3   Department of Prosthodontics, School of Dentistry, University Center Hermínio Ometto, São Paulo, Brazil
,
Ahad Shahid Ahmed
4   Department of Dentistry, McGill University, Montreal, Canada
,
Pedro Tortamano Neto
1   Department of Prosthodontics, School of Dentistry, University of São Paulo, Brazil
,
Alma Blasida Concepcion Elizaur Benitez Catirse
2   Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo, Brazil
› Author Affiliations

Abstract

Objective: To evaluate the surface roughness of resin composite and ceramic material after immersion in mouthwashes. Methodology: Thirty specimens of resin composite and ceramic material were prepared with a stainless steel matrix (6 mm × 2 mm). The samples of each material were divided into three groups (n = 10), according to the mouthwashes: Distilled water (DW), chlorhexidine (CL) 0.12%, and cetylpyridinium chloride (CC). Specimens were individually submitted to the immersion cycle in 15 mL of mouthwash for 30 days, three times per day, for 1 min/cycle. Surface roughness measurements were performed at three different time intervals: Before the first cycle (T0), after 7 (T1), and 30 days (T2) of immersion. Data were analyzed by the two-way ANOVA and Tukey tests (P ≤ 0.05). Results: There was no statistically significant difference in surface roughness of resin composite among mouthwashes (DW - 1.4 ± 0.13 μm; CL - 1.16 ± 0.13 μm; CC - 1.18 ± 0.13 μm). Surface roughness was statistically significantly lower after 30 days (T2-0.56 ± 0.60 μm) compared with the initial period (T0-1.63 ± 0.60 μm) and after 7 days (T1-1.57 ± 0.60 μm). For ceramic material, CC (3.75 ± 0.60 μm) caused a higher level of surface roughness compared with DW (2.57 ± 0.60 μm) and CL (3.39 ± 0.60 μm). There was no statistically significant difference among the different time intervals (T0-3.05 ± 0.18 μm; T1-3.41 ± 0.18 μm; T2-3.26 ± 0.18 μm). Conclusion: Mouthwashes did not promote a significant change in surface roughness of composite resin. Cetylpyridinium chloride promoted an increase in surface roughness of dental ceramic.



Publication History

Article published online:
01 November 2021

© 2016. European Journal of General Dentistry. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/.)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Dos Santos PA, Garcia PP, De Oliveira AL, Chinelatti MA, Palma-Dibb RG. Chemical and morphological features of dental composite resin: Influence of light curing units and immersion media. Microsc Res Tech 2010;73:176-81.
  • 2 Kukiattrakoon B, Hengtrakool C, Kedjarune-Leggat U. Chemical durability and microhardness of dental ceramics immersed in acidic agents. Acta Odontol Scand 2010;68:1-10.
  • 3 Osorio E, Aguilera FS, Osorio R, García-Godoy F, Cabrerizo-Vilchez MA, Toledano M. Determining efficacy of monitoring devices on ceramic bond to resin composite. Med Oral Patol Oral Cir Bucal 2012;17:e833-40.
  • 4 Sripetchdanond J, Leevailoj C. Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: An in vitro study. J Prosthet Dent 2014;112:1141-50.
  • 5 Voltarelli FR, Santos-Daroz CB, Alves MC, Cavalcanti AN, Marchi GM. Effect of chemical degradation followed by toothbrushing on the surface roughness of restorative composites. J Appl Oral Sci 2010;18:585-90.
  • 6 de Paula AB, Fucio SB, Ambrosano GM, Alonso RC, Sardi JC, Puppin-Rontani RM. Biodegradation and abrasive wear of nano restorative materials. Oper Dent 2011;36:670-7.
  • 7 Bajwa NK, Pathak A. Change in surface roughness of esthetic restorative materials after exposure to different immersion regimes in a cola drink. ISRN Dent 2014;2014:353926.
  • 8 Ccahuana VZ, Ozcan M, Mesquita AM, Nishioka RS, Kimpara ET, Bottino MA. Surface degradation of glass ceramics after exposure to acidulated phosphate fluoride. J Appl Oral Sci 2010;18:155-65.
  • 9 Rocha AC, Santiago DC, Lima CS, Santos MC, Montes MA. Evaluation of surface roughness of a nanofill resin composite after simulated brushing and immersion in mouthrinses, alcohol and water. Mat Res 2010;13:77-80.
  • 10 Ferracane JL. Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater 2006;22:211-22.
  • 11 Esquivel-Upshaw J, Rose W, Oliveira E, Yang M, Clark AE, Anusavice K. Randomized, controlled clinical trial of bilayer ceramic and metal-ceramic crown performance. J Prosthodont 2013;22:166-73.
  • 12 Padovani G, Fúcio S, Ambrosano G, Sinhoreti M, Puppin-Rontani R. In situ surface biodegradation of restorative materials. Oper Dent 2014;39:349-60.
  • 13 Sadaghiani L, Wilson MA, Wilson NH. Effect of selected mouthwashes on the surface roughness of resin modified glass-ionomer restorative materials. Dent Mater 2007;23:325-34.
  • 14 Tabatabaei SH, Sabaghi A. The effect of three mouthwashes on micro leakage of a composite resin-an in vitro study. J Am Sci 2013;9:13-9.
  • 15 Diab M, Zaazou MH, Mubarak EH, Fahmy OM. Effect of five commercial mouthrinses on the microhardness and color stability of two resin composite restorative materials. Aust J Basic Appl Sci 2007;1:667-74.
  • 16 Soares LE, de Oliveira R, Nahórny S, Santo AM, Martin AA. Micro energy-dispersive X-ray fluoresence mapping of enamel and dental materials after chemical erosion. Microsc Microanal 2012;18:1112-7.
  • 17 Cengiz S, Yüzbasioglu E, Cengiz MI, Velioglu N, Sevimli G. Color stability and surface roughness of a laboratory-processed composite resin as a function of mouthrinse. J Esthet Restor Dent 2015;27:314-21.
  • 18 Yeh ST, Wang HT, Liao HY, Su SL, Chang CC, Kao HC, et al. The roughness, microhardness, and surface analysis of nanocomposites after application of topical fluoride gels. Dent Mater 2011;27:187-96.
  • 19 Badra VV, Faraoni JJ, Ramos RP, Palma-Dibb RG. Influence of different beverages on the microhardness and surface roughness of resin composites. Oper Dent 2005;30:213-9.
  • 20 Zhang Y, Xu J. Effect of immersion in various media on the sorption, solubility, elution of unreacted monomers, and flexural properties of two model dental composite compositions. J Mater Sci Mater Med 2008;19:2477-83.
  • 21 Gajewski VE, Pfeifer CS, Fróes-Salgado NR, Boaro LC, Braga RR. Monomers used in resin composites: Degree of conversion, mechanical properties and water sorption/solubility. Braz Dent J 2012;23:508-14.
  • 22 Esquivel-Upshaw JF, Dieng FY, Clark AE, Neal D, Anusavice KJ. Surface degradation of dental ceramics as a function of environmental pH. J Dent Res 2013;92:467-71.