CC BY-NC-ND 4.0 · J Neuroanaesth Crit Care 2016; 03(04): S4-S11
DOI: 10.4103/2348-0548.174726
Conference Proceeding
Thieme Medical and Scientific Publishers Private Ltd.

Biomarkers in neurocritical care

Benedict Tan
1   Department of Neurology, Division of Vascular Neurology and Neurocritical Care, Baylor College of Medicine, CHI Baylor St. Luke’s Medical Center, Houston, TX, USA
,
Jose I. Suarez
1   Department of Neurology, Division of Vascular Neurology and Neurocritical Care, Baylor College of Medicine, CHI Baylor St. Luke’s Medical Center, Houston, TX, USA
› Author Affiliations
Further Information

Publication History

Publication Date:
05 May 2018 (online)

INTRODUCTION

One of the great challenges faced by practitioners is reaching the correct diagnosis in patients with acute neurological problems. Usually, excellent history taking complemented with skilful neurological examinations will shed light on the possible diagnosis. However, in practice, the inconspicuousness of disease often eclipses the real problem, and the lack of readily reliable data may delay or misdirect the care.

Given these circumstances, biomarkers play a role and act as a surrogate measure. In a highly dynamic Neurointensive Care Unit (NICU) environment, it can help guide the treatment decisions or provide risk stratification. It is not meant to replace the traditional methods, but should rather serve as a useful adjunctive tool. We aim to review the different types, strengths and limitation of biomarkers in this setting.

 
  • REFERENCES

  • 1 Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin Pharmacol Ther 2001; 69: 89-95
  • 2 Rudman D, Fleischer A, Kutner MH. Concentration of 3’, 5’ cyclic adenosine monophosphate in ventricular cerebrospinal fluid of patients with prolonged coma after head trauma or intracranial hemorrhage. N Engl J Med 1976; 295: 635-8
  • 3 Kochanek PM, Berger RP, Bayir H, Wagner AK, Jenkins LW, Clark RS. Biomarkers of primary and evolving damage in traumatic and ischemic brain injury: Diagnosis, prognosis, probing mechanisms, and therapeutic decision making. Curr Opin Crit Care 2008; 14: 135-41
  • 4 Vaagenes P, Safar P, Diven W, Moossy J, Rao G, Cantadore R. et al. Brain enzyme levels in CSF after cardiac arrest and resuscitation in dogs: Markers of damage and predictors of outcome. J Cereb Blood Flow Metab 1988; 8: 262-75
  • 5 Vaagenes P, Mullie A, Fodstad DT, Abramson N, Safar P. The use of cytosolic enzyme increase in cerebrospinal fluid of patients resuscitated after cardiac arrest. Brain Resuscitation Clinical Trial I Study Group. Am J Emerg Med 1994; 12: 621-4
  • 6 Chou SH, Robertson CS. Participants in the International Multi-disciplinary Consensus Conference on the Multimodality Monitoring. Monitoring biomarkers of cellular injury and death in acute brain injury. Neurocrit Care 2014; 21 Suppl (Suppl. 02) S187-214
  • 7 Kulbe JR, Geddes JW. Current status of fluid biomarkers in mild traumatic brain injury. Exp Neurol. 2015. pii: (PMID: S0014-488600151-X)
  • 8 Jenkins LW, Peters GW, Dixon CE, Zhang X, Clark RS, Skinner JC. et al. Conventional and functional proteomics using large format two-dimensional gel electrophoresis 24 hours after controlled cortical impact in postnatal day 17 rats. J Neurotrauma 2002; 19: 715-40
  • 9 Gao W, Lu C, Kochanek PM, Berger RP. Serum amyloid A is increased in children with abusive head trauma: A gel-based proteomic analysis. Pediatr Res 2014; 76: 280-6
  • 10 Bazan NG, Marcheselli VL, Cole-Edwards K. Brain response to injury and neurodegeneration: Endogenous neuroprotective signaling. Ann N Y Acad Sci 2005; 1053: 137-47
  • 11 Han X, Gross RW. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: A bridge to lipidomics. J Lipid Res 2003; 44: 1071-9
  • 12 Bayir H, Tyurin VA, Tyurina YY, Viner R, Ritov V, Amoscato AA. et al. Selective early cardiolipin peroxidation after traumatic brain injury: An oxidative lipidomics analysis. Ann Neurol 2007; 62: 154-69
  • 13 Samhan-Arias AK, Ji J, Demidova OM, Sparvero LJ, Feng W, Tyurin V. et al. Oxidized phospholipids as biomarkers of tissue and cell damage with a focus on cardiolipin. Biochim Biophys Acta 2012; 1818: 2413-23
  • 14 Wood PL. Lipidomics of Alzheimer's disease: Current status. Alzheimers Res Ther 2012; 4: 5
  • 15 Merritt VC, Arnett PA. Apolipoprotein E (APOE) ε4 allele is associated with increased symptom reporting following sports concussion. J Int Neuropsychol Soc 2016; 22: 89-94
  • 16 Li L, Bao Y, He S, Wang G, Guan Y, Ma D. et al. The association between apolipoprotein E and functional outcome after traumatic brain injury: A Meta-Analysis. Medicine (Baltimore) 2015; 94: e2028
  • 17 Lanterna LA, Ruigrok Y, Alexander S, Tang J, Biroli F, Dunn LT. et al. Meta-analysis of APOE genotype and subarachnoid hemorrhage: Clinical outcome and delayed ischemia. Neurology 2007; 69: 766-75
  • 18 Biffi A, Sonni A, Anderson CD, Kissela B, Jagiella JM, Schmidt H. et al. Variants at APOE influence risk of deep and lobar intracerebral hemorrhage. Ann Neurol 2010; 68: 934-43
  • 19 Raffeld MR, Biffi A, Battey TW, Ayres AM, Viswanathan A, Greenberg SM. et al. APOE e4 and lipid levels affect risk of recurrent nonlobar intracerebral hemorrhage. Neurology 2015; 85: 349-56
  • 20 Holtzman DM, Goate A, Kelly J, Sperling R. Mapping the road forward in Alzheimer's disease. Sci Transl Med 2011; 3: 114ps48
  • 21 Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843-54
  • 22 Ambros V. The functions of animal microRNAs. Nature 2004; 431: 350-5
  • 23 Cardoso AL, Guedes JR, de Lima MC. Role of microRNAs in the regulation of innate immune cells under neuroinflammatory conditions. Curr Opin Pharmacol 2015; 26: 1-9
  • 24 Pareek S, Roy S, Kumari B, Jain P, Banerjee A, Vrati S. MiR-155 induction in microglial cells suppresses Japanese encephalitis virus replication and negatively modulates innate immune responses. J Neuroinflammation 2014; 11: 97
  • 25 Redell JB, Moore AN, Ward 3rd NH, Hergenroeder GW, Dash PK. Human traumatic brain injury alters plasma microRNA levels. J Neurotrauma 2010; 27: 2147-56
  • 26 Yu B, Zhou S, Yi S, Gu X. The regulatory roles of non-coding RNAs in nerve injury and regeneration. Prog Neurobiol 2015; 134: 122-39
  • 27 Jickling GC, Ander BP, Zhan X, Noblett D, Stamova B, Liu D. microRNA expression in peripheral blood cells following acute ischemic stroke and their predicted gene targets. PLoS One 2014; 9: e99283
  • 28 Elshal MF, McCoy JP. Multiplex bead array assays: Performance evaluation and comparison of sensitivity to ELISA. Methods 2006; 38: 317-23
  • 29 Properzi F, Logozzi M, Fais S. Exosomes: The future of biomarkers in medicine. Biomark Med 2013; 7: 769-78
  • 30 Henriksen K, O'Bryant SE, Hampel H, Trojanowski JQ, Montine TJ, Jeromin A. et al. The future of blood-based biomarkers for Alzheimer's disease. Alzheimers Dement 2014; 10: 115-31
  • 31 Marx CE, Naylor JC, Kilts JD. et al. Neurosteroids and traumatic brain injury: Translating biomarkers to therapeutics; overview and pilot investigations in Iraq and Afghanistan Era Veterans. In: Laskowitz D, Grant G. editors. Translational Research in Traumatic Brain Injury. Boca Raton (FL): CRC Press/Taylor and Francis Group; 2015
  • 32 Moore BW, Mcgregor D. Chromatographic and electrophoretic fractionation of soluble proteins of brain and liver. J Biol Chem 1965; 240: 1647-53
  • 33 Zhu L, Okano S, Takahara M, Chiba T, Tu Y, Oda Y. et al. Expression of S100 protein family members in normal skin and sweat gland tumors. J Dermatol Sci 2013; 70: 211-9
  • 34 Schäfer BW, Heizmann CW. The S100 family of EF-hand calcium-binding proteins: Functions and pathology. Trends Biochem Sci 1996; 21: 134-40
  • 35 Hajduková L, Sobek O, Prchalová D, Bílková Z, Koudelková M, Lukáŝková J. et al. Biomarkers of brain damage: S100B and NSE concentrations in cerebrospinal fluid-a normative study. Biomed Res Int 2015; 2015: 379071
  • 36 Wiesmann M, Missler U, Hagenström H, Gottmann D. S-100 protein plasma levels after aneurysmal subarachnoid haemorrhage. Acta Neurochir (Wien) 1997; 139: 1155-60
  • 37 Oertel M, Schumacher U, McArthur DL, Kästner S, Böker DK. S-100B and NSE: Markers of initial impact of subarachnoid haemorrhage and their relation to vasospasm and outcome. J Clin Neurosci 2006; 13: 834-40
  • 38 Stranjalis G, Korfias S, Psachoulia C, Kouyialis A, Sakas DE, Mendelow AD. The prognostic value of serum S-100B protein in spontaneous subarachnoid haemorrhage. Acta Neurochir (Wien) 2007; 149: 231-7
  • 39 Strathmann FG, Schulte S, Goerl K, Petron DJ. Blood-based biomarkers for traumatic brain injury: Evaluation of research approaches, available methods and potential utility from the clinician and clinical laboratory perspectives. Clin Biochem 2014; 47: 876-88
  • 40 Žurek J, Fedora M. The usefulness of S100B, NSE, GFAP, NF-H, secretagogin and Hsp70 as a predictive biomarker of outcome in children with traumatic brain injury. Acta Neurochir (Wien) 2012; 154: 93-103
  • 41 Toman E, Harrisson S, Belli T. Biomarkers in traumatic brain injury: A review. J R Army Med Corps. 2015. pii: (PMID: Jramc-2015-000517)
  • 42 Cronberg T, Rundgren M, Westhall E, Englund E, Siemund R, Rosén I. et al. Neuron-specific enolase correlates with other prognostic markers after cardiac arrest. Neurology 2011; 77: 623-30
  • 43 Rundgren M, Karlsson T, Nielsen N, Cronberg T, Johnsson P, Friberg H. Neuron specific enolase and S-100B as predictors of outcome after cardiac arrest and induced hypothermia. Resuscitation 2009; 80: 784-9
  • 44 Daubin C, Quentin C, Allouche S, Etard O, Gaillard C, Seguin A. et al. Serum neuron-specific enolase as predictor of outcome in comatose cardiac-arrest survivors: A prospective cohort study. BMC Cardiovasc Disord 2011; 11: 48
  • 45 Zandbergen EG, Hijdra A, Koelman JH, Hart AA, Vos PE, Verbeek MM. et al. Prediction of poor outcome within the first 3 days of postanoxic coma. Neurology 2006; 66: 62-8
  • 46 Rossetti AO, Carrera E, Oddo M. Early EEG correlates of neuronal injury after brain anoxia. Neurology 2012; 78: 796-802
  • 47 Stammet P, Collignon O, Hassager C, Wise MP, Hovdenes J, Åneman A. et al. Neuron-Specific Enolase as a predictor of death or poor neurological outcome after out-of-hospital cardiac arrest and targeted temperature management at 33°C and 36°C. J Am Coll Cardiol 2015; 65: 2104-14
  • 48 Bergman L, Åkerud H. Plasma levels of the cerebral biomarker, neuron-specific enolase, are elevated during pregnancy in women developing preeclampsia. Reprod Sci. 2015. pii: (PMID: 1933719115604732)
  • 49 Forde CT, Karri SK, Young AM, Ogilvy CS. Predictive markers in traumatic brain injury: Opportunities for a serum biosignature. Br J Neurosurg 2014; 28: 8-15
  • 50 Eng LF, Vanderhaeghen JJ, Bignami A, Gerstl B. An acidic protein isolated from fibrous astrocytes. Brain Res 1971; 28: 351-4
  • 51 Sandler SJ, Figaji AA, Adelson PD. Clinical applications of biomarkers in pediatric traumatic brain injury. Childs Nerv Syst 2010; 26: 205-13
  • 52 Mondello S, Papa L, Buki A, Bullock MR, Czeiter E, Tortella FC. et al. Neuronal and glial markers are differently associated with computed tomography findings and outcome in patients with severe traumatic brain injury: A case control study. Crit Care 2011; 15: R156
  • 53 Lei J, Gao G, Feng J, Jin Y, Wang C, Mao Q. et al. Glial fibrillary acidic protein as a biomarker in severe traumatic brain injury patients: A prospective cohort study. Crit Care 2015; 19: 362
  • 54 Takala RS, Posti JP, Runtti H, Newcombe VF, Outtrim J, Katila AJ. et al. GFAP and UCH-L1 as outcome predictors in traumatic brain injury. World Neurosurg. 2015. pii: (PMID: S1878-875001484-9)
  • 55 Horstmann S, Kalb P, Koziol J, Gardner H, Wagner S. Profiles of matrix metalloproteinases, their inhibitors, and laminin in stroke patients: Influence of different therapies. Stroke 2003; 34: 2165-70
  • 56 Montaner J, Alvarez-Sabín J, Molina C, Anglés A, Abilleira S, Arenillas J. et al. Matrix metalloproteinase expression after human cardioembolic stroke: Temporal profile and relation to neurological impairment. Stroke 2001; 32: 1759-66
  • 57 Clark AW, Krekoski CA, Bou SS, Chapman KR, Edwards DR. Increased gelatinase A (MMP-2) and gelatinase B (MMP-9) activities in human brain after focal ischemia. Neurosci Lett 1997; 238: 53-6
  • 58 Heo JH, Kim SH, Lee KY, Kim EH, Chu CK, Nam JM. Increase in plasma matrix metalloproteinase-9 in acute stroke patients with thrombolysis failure. Stroke 2003; 34: e48-50
  • 59 Ning M, Furie KL, Koroshetz WJ, Lee H, Barron M, Lederer M. et al. Association between tPA therapy and raised early matrix metalloproteinase-9 in acute stroke. Neurology 2006; 66: 1550-5
  • 60 Castellanos M, Sobrino T, Millan M. et al. Plasma MMP-9 and fibronectin levels confirm their value as powerful predictors of hemorrhagic transformation after thrombolytic therapy in acute ischemic stroke: A multicenter prospective study. In: Stroke. Philadelphia, PA, USA: Lippincott Williams & Wilkins; 2007. p. 463
  • 61 Montaner J, Molina CA, Monasterio J, Abilleira S, Arenillas JF, Ribó M. et al. Matrix metalloproteinase-9 pretreatment level predicts intracranial hemorrhagic complications after thrombolysis in human stroke. Circulation 2003; 107: 598-603
  • 62 Jha R, Battey TW, Pham L, Lorenzano S, Furie KL, Sheth KN. et al. Fluid-attenuated inversion recovery hyperintensity correlates with matrix metalloproteinase-9 level and hemorrhagic transformation in acute ischemic stroke. Stroke 2014; 45: 1040-5
  • 63 Moldes O, Sobrino T, Millán M, Castellanos M, Pérez de la Ossa N, Leira R. et al. High serum levels of endothelin-1 predict severe cerebral edema in patients with acute ischemic stroke treated with t-PA. Stroke 2008; 39: 2006-10
  • 64 Serena J, Blanco M, Castellanos M, Silva Y, Vivancos J, Moro MA. et al. The prediction of malignant cerebral infarction by molecular brain barrier disruption markers. Stroke 2005; 36: 1921-6
  • 65 Castellanos M, Leira R, Serena J, Blanco M, Pedraza S, Castillo J. et al. Plasma cellular-fibronectin concentration predicts hemorrhagic transformation after thrombolytic therapy in acute ischemic stroke. Stroke 2004; 35: 1671-6
  • 66 Castellanos M, Sobrino T, Millán M, García M, Arenillas J, Nombela F. et al. Serum cellular fibronectin and matrix metalloproteinase-9 as screening biomarkers for the prediction of parenchymal hematoma after thrombolytic therapy in acute ischemic stroke: A multicenter confirmatory study. Stroke 2007; 38: 1855-9
  • 67 Chang JJ, Emanuel BA, Mack WJ, Tsivgoulis G, Alexandrov AV. Matrix metalloproteinase-9: Dual role and temporal profile in intracerebral hemorrhage. J Stroke Cerebrovasc Dis 2014; 23: 2498-505
  • 68 Raman K, Paré G. Of stroke and biomarkers: The elusive quest for a clinical biomarker panel. Clin Biochem 2013; 46: 705-6
  • 69 Jackson P, Thompson RJ. The demonstration of new human brain-specific proteins by high-resolution two-dimensional polyacrylamide gel electrophoresis. J Neurol Sci 1981; 49: 429-38
  • 70 Thompson RJ, Doran JF, Jackson P, Dhillon AP, Rode J. PGP 9.5 – A new marker for vertebrate neurons and neuroendocrine cells. Brain Res 1983; 278: 224-8
  • 71 Campbell LK, Thomas JR, Lamps LW, Smoller BR, Folpe AL. Protein gene product 9.5 (PGP 9.5) is not a specific marker of neural and nerve sheath tumors: An immunohistochemical study of 95 mesenchymal neoplasms. Mod Pathol 2003; 16: 963-9
  • 72 Blyth BJ, Farahvar A, He H, Nayak A, Yang C, Shaw G. et al. Elevated serum ubiquitin carboxy-terminal hydrolase L1 is associated with abnormal blood-brain barrier function after traumatic brain injury. J Neurotrauma 2011; 28: 2453-62
  • 73 Zhang M, Cai F, Zhang S, Zhang S, Song W. Overexpression of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) delays Alzheimer's progression in vivo . Sci Rep 2014; 4: 7298
  • 74 Brophy GM, Mondello S, Papa L, Robicsek SA, Gabrielli A, Tepas 3rd J. et al. Biokinetic analysis of ubiquitin C-terminal hydrolase-L1 (UCH-L1) in severe traumatic brain injury patient biofluids. J Neurotrauma 2011; 28: 861-70
  • 75 Mondello S, Palmio J, Streeter J, Hayes RL, Peltola J, Jeromin A. Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) is increased in cerebrospinal fluid and plasma of patients after epileptic seizure. BMC Neurol 2012; 12: 85
  • 76 Pang L, Wu Y, Dong N, Xu DH, Wang DW, Wang ZH. et al. Elevated serum ubiquitin C-terminal hydrolase-L1 levels in patients with carbon monoxide poisoning. Clin Biochem 2014; 47: 72-6
  • 77 Yaghi S, Eisenberger A, Willey JZ. Symptomatic intracerebral hemorrhage in acute ischemic stroke after thrombolysis with intravenous recombinant tissue plasminogen activator: A review of natural history and treatment. JAMA Neurol 2014; 71: 1181-5
  • 78 Yaghi S, Boehme AK, Dibu J, Leon Guerrero CR, Ali S, Martin-Schild S. et al. Treatment and outcome of thrombolysis-related hemorrhage: A Multicenter Retrospective Study. JAMA Neurol 2015; 72: 1451-7
  • 79 Kumar RG, Diamond ML, Boles JA, Berger RP, Tisherman SA, Kochanek PM. et al. Acute CSF interleukin-6 trajectories after TBI: Associations with neuroinflammation, polytrauma, and outcome. Brain Behav Immun 2015; 45: 253-62
  • 80 Ross SA, Halliday MI, Campbell GC, Byrnes DP, Rowlands BJ. The presence of tumour necrosis factor in CSF and plasma after severe head injury. Br J Neurosurg 1994; 8: 419-25
  • 81 Crespo AR, Da Rocha AB, Jotz GP, Schneider RF, Grivicich I, Pinheiro K. et al. Increased serum sFas and TNFalpha following isolated severe head injury in males. Brain Inj 2007; 21: 441-7
  • 82 Chen JJ, Lu TP, Chen YC, Lin WJ. Predictive biomarkers for treatment selection: Statistical considerations. Biomark Med 2015; 9: 1121-35