CC BY-NC-ND 4.0 · J Neuroanaesth Crit Care 2016; 03(04): S44-S52
DOI: 10.4103/2348-0548.174735
Conference Proceeding
Thieme Medical and Scientific Publishers Private Ltd.

Genomics relevant to the neuroanaesthesiologist

Vidya Chidambaran
1   Department of Anesthesiology, Division of Pediatrics, Cincinnati Children’s Hospital, Cincinnati, OH, USA
› Author Affiliations
Further Information

Publication History

Publication Date:
05 May 2018 (online)

INTRODUCTION

‘It is more important to know what sort of person has a disease, than to know what sort of disease a person has’. ~ Hippocrates (circa. 460–370 BC)

The essence of Hippocrates’ observation is coming to fruition 25 centuries later[1] in the understanding of genomics to explain inter-individual variability, and in response, application of the knowledge to improve clinical outcomes. Anaesthesia speciality has been the forerunner for many discoveries and applications in genomics from the infant stages of the field, for example, interactions of barbiturate in patients with porphyria (1937),[2] cholinesterase deficiency leading to succinylcholine-induced prolonged apnoea (1957)[3] and malignant hyperthermia (1962).[4] In the field of neurosurgery, reports of personalised therapy decisions based on genetic, epigenetic and molecular biomarkers have recently emerged – use of candidate molecular markers to complement diagnoses, aid prognosis and allow individualised treatment to patients with glioblastoma multiforme, thereby avoiding unnecessary therapy, reducing toxicity and associated costs.[5] While the decision to operate or not is being aided by genetics, the perioperative period is itself a model of stress and inflammation superimposed on complex disease and is associated with pain and haemodynamic/metabolic shifts[6] – all these elements have a genetic basis for individual response variability. As can be imagined, surgical trauma triggers an integrated neuroendocrine reaction, and the body mounts a counter-regulatory response. The balance between these pro-inflammatory pathways and the response is an individually determined process and affects patient outcomes. This makes it imperative that personalisation be the backbone of patient management during this period.

Moreover, the patient is exposed to multiple drugs in a short course of time perioperatively. We know that drug response variability is a major factor leading to perioperative adverse reactions, and genetic factors contribute to an estimated 50% of drug response variability.[7] This is because about 59% of drugs cited in adverse drug reactions are metabolised by at least one enzyme with a variant allele known to cause poor metabolism.[8] [9] Hence, genomics should play an important role in the practice of anaesthesia today. This is of futuristic importance given projections that by 2020, the number of surgeries will increase by 25%, associated costs by 50% and likelihood of atherosclerotic-related cardiac, cerebral and renal complications by 100%.[6] [10] [11] Personalised medicine may be the key to preventing these predictions from becoming true.

 
  • REFERENCES

  • 1 Sykiotis GP, Kalliolias GD, Papavassiliou AG. Pharmacogenetic principles in the Hippocratic writings. J Clin Pharmacol 2005; 45: 1218-20
  • 2 Waldenstrom J. Studien über porphyrie. Acta Med Scand. 1937 Suppl 82 3
  • 3 Kalow W, Genest K. A method for the detection of atypical forms of human serum cholinesterase; determination of dibucaine numbers. Can J Biochem Physiol 1957; 35: 339-46
  • 4 Vogel F, Gotze W. Familial studies on genetics of the normal electroencephalogram. Dtsch Z Nervenheilkd 1959; 178: 668-700
  • 5 Nicolaidis S. Personalized medicine in neurosurgery. Metabolism 2013; 62 Suppl (Suppl. 01) S45-8
  • 6 Turer AT, Schwinn DA. Understanding the transition to acute illness: the promise of perioperative genomics. J Cardiovasc Transl Res 2008; 1: 171-3
  • 7 Classen DC, Pestotnik SL, Evans RS, Lloyd JF, Burke JP. Adverse drug events in hospitalized patients. Excess length of stay, extra costs, and attributable mortality. JAMA 1997; 277: 301-6
  • 8 Phillips KA, Veenstra DL, Oren E, Lee JK, Sadee W. Potential role of pharmacogenomics in reducing adverse drug reactions: A systematic review. JAMA 2001; 286: 2270-9
  • 9 Chidambaran V, Ngamprasertwong P, Vinks AA, Sadhasivam S. Pharmacogenetics and anesthetic drugs. Curr Clin Pharmacol 2012; 7: 78-101
  • 10 Podgoreanu MV, White WD, Morris RW, Mathew JP, Stafford-Smith M, Welsby IJ. et al. Inflammatory gene polymorphisms and risk of postoperative myocardial infarction after cardiac surgery. Circulation 2006; 114 (Suppl. 01) Suppl I275-81
  • 11 Mangano DT. Perioperative medicine: NHLBI working group deliberations and recommendations. J Cardiothorac Vasc Anesth 2004; 18: 1-6
  • 12 Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G. et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001; 409: 928-33
  • 13 Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004; 429: 457-63
  • 14 Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML. et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 2005; 102: 10604-9
  • 15 Palmer SN, Giesecke NM, Body SC, Shernan SK, Fox AA, Collard CD. Pharmacogenetics of anesthetic and analgesic agents. Anesthesiology 2005; 102: 663-71
  • 16 Agúndez JA, García-Martín E, Martínez C. Genetically based impairment in CYP2C8- and CYP2C9-dependent NSAID metabolism as a risk factor for gastrointestinal bleeding: Is a combination of pharmacogenomics and metabolomics required to improve personalized medicine?. Expert Opin Drug Metab Toxicol 2009; 5: 607-20
  • 17 Higashi MK, Veenstra DL, Kondo LM, Wittkowsky AK, Srinouanprachanh SL, Farin FM. et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA 2002; 287: 1690-8
  • 18 López-Rodríguez R, Novalbos J, Gallego-Sandín S, Román-Martínez M, Torrado J, Gisbert JP. et al. Influence of CYP2C8 and CYP2C9 polymorphisms on pharmacokinetic and pharmacodynamic parameters of racemic and enantiomeric forms of ibuprofen in healthy volunteers. Pharmacol Res 2008; 58: 77-84
  • 19 U.S. Food and Drug Administration. Table on Pharmacogenomic Biomarkers in Drug Labels.
  • 20 Jin M, Gock SB, Jannetto PJ, Jentzen JM, Wong SH. Pharmacogenomics as molecular autopsy for forensic toxicology: Genotyping cytochrome P450 3A4*1B and 3A5*3 for 25 fentanyl cases. J Anal Toxicol 2005; 29: 590-8
  • 21 Inomata S, Nagashima A, Itagaki F, Homma M, Nishimura M, Osaka Y. et al. CYP2C19 genotype affects diazepam pharmacokinetics and emergence from general anesthesia. Clin Pharmacol Ther 2005; 78: 647-55
  • 22 Qin XP, Xie HG, Wang W, He N, Huang SL, Xu ZH. et al. Effect of the gene dosage of CgammaP2C19 on diazepam metabolism in Chinese subjects. Clin Pharmacol Ther 1999; 66: 642-6
  • 23 Eap CB, Crettol S, Rougier JS, Schläpfer J, Sintra Grilo L, Déglon JJ. et al. Stereoselective block of hERG channel by (S)-methadone and QT interval prolongation in CYP2B6 slow metabolizers. Clin Pharmacol Ther 2007; 81: 719-28
  • 24 Bunten H, Liang WJ, Pounder DJ, Seneviratne C, Osselton D. OPRM1 and CYP2B6 gene variants as risk factors in methadone-related deaths. Clin Pharmacol Ther 2010; 88: 383-9
  • 25 Crews KR, Gaedigk A, Dunnenberger HM, Leeder JS, Klein TE, Caudle KE. et al. Clinical pharmacogenetics implementation consortium guidelines for cytochrome P450 2D6 genotype and codeine therapy: 2014 update. Clin Pharmacol Ther 2014; 95: 376-82
  • 26 Kirchheiner J, Schmidt H, Tzvetkov M, Keulen JT, Lötsch J, Roots I. et al. Pharmacokinetics of codeine and its metabolite morphine in ultra-rapid metabolizers due to CYP2D6 duplication. Pharmacogenomics J 2007; 7: 257-65
  • 27 Gasche Y, Daali Y, Fathi M, Chiappe A, Cottini S, Dayer P. et al. Codeine intoxication associated with ultrarapid CYP2D6 metabolism. N Engl J Med 2004; 351: 2827-31
  • 28 Stamer UM, Lehnen K, Höthker F, Bayerer B, Wolf S, Hoeft A. et al. Impact of CYP2D6 genotype on postoperative tramadol analgesia. Pain 2003; 105: 231-8
  • 29 Wang G, Zhang H, He F, Fang X. Effect of the CYP2D6*10 C188T polymorphism on postoperative tramadol analgesia in a Chinese population. Eur J Clin Pharmacol 2006; 62: 927-31
  • 30 Susce MT, Murray-Carmichael E, de Leon J. Response to hydrocodone, codeine and oxycodone in a CYP2D6 poor metabolizer. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30: 1356-8
  • 31 Zwisler ST, Enggaard TP, Mikkelsen S, Brosen K, Sindrup SH. Impact of the CYP2D6 genotype on post-operative intravenous oxycodone analgesia. Acta Anaesthesiol Scand 2010; 54: 232-40
  • 32 Sadhasivam S, Krekels EH, Chidambaran V, Esslinger HR, Ngamprasertwong P, Zhang K. et al. Morphine clearance in children: Does race or genetics matter?. J Opioid Manag 2012; 8: 217-26
  • 33 Janicki PK. Cytochrome P450 2D6 metabolism and 5-hydroxytryptamine type 3 receptor antagonists for postoperative nausea and vomiting. Med Sci Monit 2005; 11: RA322-8
  • 34 Fukuda T, Chidambaran V, Mizuno T, Venkatasubramanian R, Ngamprasertwong P, Olbrecht V. et al. OCT1 genetic variants influence the pharmacokinetics of morphine in children. Pharmacogenomics 2013; 14: 1141-51
  • 35 Venkatasubramanian R, Fukuda T, Niu J, Mizuno T, Chidambaran V, Vinks AA. et al. ABCC3 and OCT1 genotypes influence pharmacokinetics of morphine in children. Pharmacogenomics 2014; 15: 1297-309
  • 36 Calvert J, Lehmann H, Silk E, Slack WK. Prolonged apnoea after suxamethonium; a case study of pseudocholinesterase. Lancet 1954; 267: 354-6
  • 37 Lando G, Mosca A, Bonora R, Azzario F, Penco S, Marocchi A. et al. Frequency of butyrylcholinesterase gene mutations in individuals with abnormal inhibition numbers: An Italian-population study. Pharmacogenetics 2003; 13: 265-70
  • 38 Takahashi H, Maruo Y, Mori A, Iwai M, Sato H, Takeuchi Y. Effect of D256N and Y483D on propofol glucuronidation by human uridine 5’-diphosphate glucuronosyltransferase (UGT1A9). Basic Clin Pharmacol Toxicol 2008; 103: 131-6
  • 39 Selzer RR, Rosenblatt DS, Laxova R, Hogan K. Adverse effect of nitrous oxide in a child with 5,10-methylenetetrahydrofolate reductase deficiency. N Engl J Med 2003; 349: 45-50
  • 40 Erbe RW, Salis RJ. Severe methylenetetrahydrofolate reductase deficiency, methionine synthase, and nitrous oxide – A cautionary tale. N Engl J Med 2003; 349: 5-6
  • 41 Wilke K, Gaul R, Klauck SM, Poustka A. A gene in human chromosome band Xq28 (GABRE) defines a putative new subunit class of the GABAA neurotransmitter receptor. Genomics 1997; 45: 1-10
  • 42 Buggy DJ, Nicol B, Rowbotham DJ, Lambert DG. Effects of intravenous anesthetic agents on glutamate release: A role for GABAA receptor-mediated inhibition. Anesthesiology 2000; 92: 1067-73
  • 43 Park CS, Park HJ, Kim KN. et al. The influence of GABAAγ2 genetic polymorphism on the emergence agitation induced by sevoflurane. Korean J Anesthesiol 2008; 55: 139-44
  • 44 Liem EB, Lin CM, Suleman MI, Doufas AG, Gregg RG, Veauthier JM. et al. Anesthetic requirement is increased in redheads. Anesthesiology 2004; 101: 279-83
  • 45 Magalhães E, Gomes MD, Barra GB, Govêia CS, Ladeira LC. Evaluation of the influence of the codon 16 polymorphism of the Beta-2 adrenergic receptor gene on the incidence of arterial hypotension and ephedrine use in pregnant patients submitted to subarachnoid anesthesia. Rev Bras Anestesiol 2010; 60: 228-36
  • 46 Frey UH, Karlik J, Herbstreit F, Peters J. ß2-Adrenoceptor gene variants affect vasopressor requirements in patients after thoracic epidural anaesthesia. Br J Anaesth 2014; 112: 477-84
  • 47 Litonjua AA, Gong L, Duan QL, Shin J, Moore MJ, Weiss ST. et al. Very important pharmacogene summary ADRB2. Pharmacogenet Genomics 2010; 20: 64-9
  • 48 Diatchenko L, Anderson AD, Slade GD, Fillingim RB, Shabalina SA, Higgins TJ. et al. Three major haplotypes of the beta2 adrenergic receptor define psychological profile, blood pressure, and the risk for development of a common musculoskeletal pain disorder. Am J Med Genet B Neuropsychiatr Genet 2006; 141B: 449-62
  • 49 Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B. et al. Genomewide association analysis of coronary artery disease. N Engl J Med 2007; 357: 443-53
  • 50 Myocardial Infarction Genetics Consortium. Kathiresan S, Voight BF, Purcell S, Musunuru K, Ardissino D. et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet 2009; 41: 334-41
  • 51 Liu KY, Muehlschlegel JD, Perry TE, Fox AA, Collard CD, Body SC. et al. Common genetic variants on chromosome 9p21 predict perioperative myocardial injury after coronary artery bypass graft surgery. J Thorac Cardiovasc Surg 2010; 139: 483-8 488.e1-2
  • 52 Muehlschlegel JD, Liu KY, Perry TE, Fox AA, Collard CD, Shernan SK. et al. Chromosome 9p21 variant predicts mortality after coronary artery bypass graft surgery. Circulation 2010; 122 (Suppl. 11) Suppl S60-5
  • 53 Gaudino M, Andreotti F, Zamparelli R, Di Castelnuovo A, Nasso G, Burzotta F. et al. The-174G/C interleukin-6 polymorphism influences postoperative interleukin-6 levels and postoperative atrial fibrillation. Is atrial fibrillation an inflammatory complication?. Circulation 2003; 108 Suppl (Suppl. 01) II195-9
  • 54 Schwinn DA, Podgoreanu M. Pharmacogenomics and end-organ susceptibility to injury in the perioperative period. Best Pract Res Clin Anaesthesiol 2008; 22: 23-37
  • 55 Friedman G, Froom P, Sazbon L, Grinblatt I, Shochina M, Tsenter J. et al. Apolipoprotein E-epsilon4 genotype predicts a poor outcome in survivors of traumatic brain injury. Neurology 1999; 52: 244-8
  • 56 Teasdale GM, Nicoll JA, Murray G, Fiddes M. Association of apolipoprotein E polymorphism with outcome after head injury. Lancet 1997; 350: 1069-71
  • 57 Ariza M, Pueyo R, Matarín Mdel M, Junqué C, Mataró M, Clemente I. et al. Influence of APOE polymorphism on cognitive and behavioural outcome in moderate and severe traumatic brain injury. J Neurol Neurosurg Psychiatry 2006; 77: 1191-3
  • 58 Millar K, Nicoll JA, Thornhill S, Murray GD, Teasdale GM. Long term neuropsychological outcome after head injury: Relation to APOE genotype. J Neurol Neurosurg Psychiatry 2003; 74: 1047-52
  • 59 Kofke WA, Blissitt PA, Rao H, Wang J, Addya K, Detre J. Remifentanil-induced cerebral blood flow effects in normal humans: Dose and ApoE genotype. Anesth Analg 2007; 105: 167-75
  • 60 Grocott HP. Perioperative genomics and neurologic outcome: We can't change who we are. Can J Anaesth 2009; 56: 562-6
  • 61 Gaynor JW, Gerdes M, Zackai EH, Bernbaum J, Wernovsky G, Clancy RR. et al. Apolipoprotein E genotype and neurodevelopmental sequelae of infant cardiac surgery. J Thorac Cardiovasc Surg 2003; 126: 1736-45
  • 62 Grocott HP, White WD, Morris RW, Podgoreanu MV, Mathew JP, Nielsen DM. et al. Genetic polymorphisms and the risk of stroke after cardiac surgery. Stroke 2005; 36: 1854-8
  • 63 Sharp FR, Xu H, Lit L, Walker W, Pinter J, Apperson M. et al. Genomic profiles of stroke in blood. Stroke 2007; 38 (Suppl. 02) Suppl 691-3
  • 64 Tang Y, Xu H, Du X, Lit L, Walker W, Lu A. et al. Gene expression in blood changes rapidly in neutrophils and monocytes after ischemic stroke in humans: A microarray study. J Cereb Blood Flow Metab 2006; 26: 1089-102
  • 65 Mathew JP, Podgoreanu MV, Grocott HP, White WD, Morris RW, Stafford-Smith M. et al. Genetic variants in P-selectin and C-reactive protein influence susceptibility to cognitive decline after cardiac surgery. J Am Coll Cardiol 2007; 49: 1934-42
  • 66 Mathew JP, Rinder CS, Howe JG, Fontes M, Crouch J, Newman MF. et al. Platelet PlA2 polymorphism enhances risk of neurocognitive decline after cardiopulmonary bypass. Multicenter Study of Perioperative Ischemia (McSPI) Research Group. Ann Thorac Surg 2001; 71: 663-6
  • 67 Yenari MA, Dumas TC, Sapolsky RM, Steinberg GK. Gene therapy for treatment of cerebral ischemia using defective herpes simplex viral vectors. Ann N Y Acad Sci 2001; 939: 340-57
  • 68 Hromatka BS, Tung JY, Kiefer AK, Do CB, Hinds DA, Eriksson N. Genetic variants associated with motion sickness point to roles for inner ear development, neurological processes and glucose homeostasis. Hum Mol Genet 2015; 24: 2700-8
  • 69 Nakagawa M, Kuri M, Kambara N, Tanigami H, Tanaka H, Kishi Y. et al. Dopamine D2 receptor Taq IA polymorphism is associated with postoperative nausea and vomiting. J Anesth 2008; 22: 397-403
  • 70 Ribeiro-Dasilva. The dopamine receptor 2 (DRD2) gene is associated with opioid-induced nausea and emesis. J Pain 2009; 10: S29
  • 71 Janicki PK, Vealey R, Liu J, Escajeda J, Postula M, Welker K. Genome-wide Association study using pooled DNA to identify candidate markers mediating susceptibility to postoperative nausea and vomiting. Anesthesiology 2011; 115: 54-64
  • 72 Welsby IJ, Podgoreanu MV, Phillips-Bute B, Mathew JP, Smith PK, Newman MF. et al. Genetic factors contribute to bleeding after cardiac surgery. J Thromb Haemost 2005; 3: 1206-12
  • 73 Sirgo G, Morales P, Rello J. PAI-1 gene: Pharmacogenetic association of 4G/4G genotype with bleeding after cardiac surgery – Pilot study. Eur J Anaesthesiol 2009; 26: 404-11
  • 74 Ausman JI. Perioperative genomics. Surg Neurol 2006; 65: 422
  • 75 Stafford-Smith M, Podgoreanu M, Swaminathan M, Phillips-Bute B, Mathew JP, Hauser EH. et al. Association of genetic polymorphisms with risk of renal injury after coronary bypass graft surgery. Am J Kidney Dis 2005; 45: 519-30
  • 76 Moretti EW, Morris RW, Podgoreanu M, Schwinn DA, Newman MF, Bennett E. et al. APOE polymorphism is associated with risk of severe sepsis in surgical patients. Crit Care Med 2005; 33: 2521-6
  • 77 Hinrichs C, Kotsch K, Buchwald S, Habicher M, Saak N, Gerlach H. et al. Perioperative gene expression analysis for prediction of postoperative sepsis. Clin Chem 2010; 56: 613-22
  • 78 Holweg CT, Weimar W, Uitterlinden AG, Baan CC. Clinical impact of cytokine gene polymorphisms in heart and lung transplantation. J Heart Lung Transplant 2004; 23: 1017-26
  • 79 Diatchenko L, Nackley AG, Slade GD, Bhalang K, Belfer I, Max MB. et al. Catechol-O-methyltransferase gene polymorphisms are associated with multiple pain-evoking stimuli. Pain 2006; 125: 216-24
  • 80 Diatchenko L, Slade GD, Nackley AG, Bhalang K, Sigurdsson A, Belfer I. et al. Genetic basis for individual variations in pain perception and the development of a chronic pain condition. Hum Mol Genet 2005; 14: 135-43
  • 81 Nackley AG, Shabalina SA, Tchivileva IE, Satterfield K, Korchynskyi O, Makarov SS. et al. Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 2006; 314: 1930-3
  • 82 Sadhasivam S, Chidambaran V, Olbrecht VA, Esslinger HR, Zhang K, Zhang X. et al. Genetics of pain perception, COMT and postoperative pain management in children. Pharmacogenomics 2014; 15: 277-84
  • 83 Meineke I, Freudenthaler S, Hofmann U, Schaeffeler E, Mikus G, Schwab M. et al. Pharmacokinetic modelling of morphine, morphine-3-glucuronide and morphine-6-glucuronide in plasma and cerebrospinal fluid of neurosurgical patients after short-term infusion of morphine. Br J Clin Pharmacol 2002; 54: 592-603
  • 84 Park HJ, Shinn HK, Ryu SH, Lee HS, Park CS, Kang JH. Genetic polymorphisms in the ABCB1 gene and the effects of fentanyl in Koreans. Clin Pharmacol Ther 2007; 81: 539-46
  • 85 Kesimci E, Engin AB, Kanbak O, Karahalil B. Association between ABCB1 gene polymorphisms and fentanyl's adverse effects in Turkish patients undergoing spinal anesthesia. Gene 2012; 493: 273-7
  • 86 Coulbault L, Beaussier M, Verstuyft C, Weickmans H, Dubert L, Trégouet D. et al. Environmental and genetic factors associated with morphine response in the postoperative period. Clin Pharmacol Ther 2006; 79: 316-24
  • 87 Sadhasivam S, Chidambaran V, Zhang X, Meller J, Esslinger H, Zhang K. et al. Opioid-induced respiratory depression: ABCB1 transporter pharmacogenetics. Pharmacogenomics J 2015; 15: 119-26
  • 88 Huang P, Chen C, Mague SD, Blendy JA, Liu-Chen LY. A common single nucleotide polymorphism A118G of the μ opioid receptor alters its N-glycosylation and protein stability. Biochem J 2012; 441: 379-86
  • 89 Chou WY, Wang CH, Liu PH, Liu CC, Tseng CC, Jawan B. Human opioid receptor A118G polymorphism affects intravenous patient-controlled analgesia morphine consumption after total abdominal hysterectomy. Anesthesiology 2006; 105: 334-7
  • 90 Chou WY, Yang LC, Lu HF, Ko JY, Wang CH, Lin SH. et al. Association of mu-opioid receptor gene polymorphism (A118G) with variations in morphine consumption for analgesia after total knee arthroplasty. Acta Anaesthesiol Scand 2006; 50: 787-92
  • 91 Sia AT, Lim Y, Lim EC, Goh RW, Law HY, Landau R. et al. A118G single nucleotide polymorphism of human mu-opioid receptor gene influences pain perception and patient-controlled intravenous morphine consumption after intrathecal morphine for postcesarean analgesia. Anesthesiology 2008; 109: 520-6
  • 92 Janicki PK, Schuler G, Francis D, Bohr A, Gordin V, Jarzembowski T. et al. A genetic association study of the functional A118G polymorphism of the human mu-opioid receptor gene in patients with acute and chronic pain. Anesth Analg 2006; 103: 1011-7
  • 93 Chidambaran V, Mavi J, Esslinger H, Pilipenko V, Martin LJ, Zhang K. et al. Association of OPRM1 A118G variant with risk of morphine-induced respiratory depression following spine fusion in adolescents. Pharmacogenomics J 2015; 15: 255-62
  • 94 Walter C, Lötsch J. Meta-analysis of the relevance of the OPRM1 118A>G genetic variant for pain treatment. Pain 2009; 146: 270-5
  • 95 Bisogno T, Maccarrone M. Latest advances in the discovery of fatty acid amide hydrolase inhibitors. Expert Opin Drug Discov 2013; 8: 509-22
  • 96 Fichna J, Salaga M, Stuart J, Saur D, Sobczak M, Zatorski H. et al. Selective inhibition of FAAH produces antidiarrheal and antinociceptive effect mediated by endocannabinoids and cannabinoid-like fatty acid amides. Neurogastroenterol Motil 2014; 26: 470-81
  • 97 Sadhasivam S, Zhang X, Chidambaran V, Mavi J, Pilipenko V, Mersha TB. et al. Novel associations between FAAH genetic variants and postoperative central opioid-related adverse effects. Pharmacogenomics J 2015; 15: 436-42
  • 98 Ratain MJ. Personalized medicine: Building the GPS to take us there. Clin Pharmacol Ther 2007; 81: 321-2
  • 99 Lötsch J, Geisslinger G. Current evidence for a genetic modulation of the response to analgesics. Pain 2006; 121: 1-5
  • 100 Argoff CE. Clinical implications of opioid pharmacogenetics. Clin J Pain 2010; 26 Suppl (Suppl. 10) S16-20
  • 101 Biesiada J, Chidambaran V, Wagner M, Zhang X, Martin LJ, Meller J. et al. Genetic risk signatures of opioid-induced respiratory depression following pediatric tonsillectomy. Pharmacogenomics 2014; 15: 1749-62
  • 102 Kannry JL, Williams MS. Integration of genomics into the electronic health record: Mapping terra incognita. Genet Med 2013; 15: 757-60
  • 103 Gottesman O, Kuivaniemi H, Tromp G, Faucett WA, Li R, Manolio TA. et al. The Electronic Medical Records and Genomics (eMERGE) Network: Past, present, and future. Genet Med 2013; 15: 761-71
  • 104 Pasche B, Absher D. Whole-genome sequencing: A step closer to personalized medicine. JAMA 2011; 305: 1596-7
  • 105 Stenson PD, Mort M, Ball EV, Howells K, Phillips AD, Thomas NS. et al. The human gene mutation database: 2008 update. Genome Med 2009; 1: 13
  • 106 Bale S, Devisscher M, Van Criekinge W, Rehm HL, Decouttere F, Nussbaum R. et al. MutaDATABASE: A centralized and standardized DNA variation database. Nat Biotechnol 2011; 29: 117-8
  • 107 Houdayer C, Dehainault C, Mattler C, Michaux D, Caux-Moncoutier V, Pagès-Berhouet S. et al. Evaluation of in silico splice tools for decision-making in molecular diagnosis. Hum Mutat 2008; 29: 975-82
  • 108 Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P. et al. A method and server for predicting damaging missense mutations. Nat Methods 2010; 7: 248-9
  • 109 Katsanis SH, Katsanis N. Molecular genetic testing and the future of clinical genomics. Nat Rev Genet 2013; 14: 415-26