Subscribe to RSS
DOI: 10.4103/JLP.JLP_111_19
Prevalence and clonal relatedness of NDM and OXA-48-producing Klebsiella pneumoniae in a tertiary care hospital in South India
Financial support and sponsorship This study was supported by the Founder Chancellor Sri Ramasamy Udayar Fellowship, provided by Sri Ramachandra Institute of Higher Education and Research.Abstract
BACKGROUND: Carbapenems are used for the treatment of serious infections caused by multidrug-resistant Klebsiella pneumoniae. Resistance to carbapenems in K. pneumoniae is mainly due to metallo-beta-lactamases (NDM, IMP, and VIM) and class D oxacillinase (OXA-48-like).
AIM AND OBJECTIVE: This study was undertaken to detect the genes encoding for carbapenemase in K. pneumoniae and to determine the clonal relatedness of selected isolates of K. pneumoniae producing NDM and OXA-48 by pulsed-field gel electrophoresis method (PFGE).
MATERIALS AND METHODS: The isolates were collected over a period of 1 year. A total of 370 clinically significant, nonduplicate isolates of K. pneumoniae were included in this study. Phenotypic tests for the detection of carbapenemases were performed for all the isolates. Polymerase chain reaction (PCR) was carried out for the detection of carbapenemase genes such as blaKPC, blaIMP, blaVIM,blaNDM, and blaOXA-48. PFGE was performed, and the PFGE profiles were analyzed and compared using BioNumerics version 7.6.
RESULTS: Of the 370 isolates of K. pneumoniae, carbapenemase genes were detected in 13.78% (51/370). blaOXA-48was the prevalent gene detected followed by blaNDMand blaKPC. Thirty strains of K. pneumoniae selected by PFGE analysis were divided into five clusters (A, B, C, D, and E). Cluster C was the major type detected carrying blaNDMand blaOXA-48genes.
CONCLUSION:blaOXA-48was the most prevalent gene detected in this study. PCR is useful in detecting carbapenemase genes, especially blaNDM, which may show false susceptibility to carbapenems. There was no direct correlation detected between PFGE profiles and antibiotic susceptibility pattern. PFGE has revealed the genomic diversity among isolates, thereby suggesting heterogeneity in strain circulation within intensive care unit and wards of the hospital. Monitoring and molecular typing is essential to curtail the spread of multidrug-resistant strains and control the outbreaks of infection.
Key words
Carbapenemase - clonal relatedness - genotypic tests - Klebsiella pneumoniae - phenotypic tests - prevalencePublication History
Received: 09 July 2019
Accepted: 24 November 2019
Article published online:
07 April 2020
© 2019.
Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India
-
References
- 1 Hayder N, Hasan Z, Afrin S, Noor R. Determination of the frequency of carbapenemase producing Klebsiella pneumoniae isolates in Dhaka city, Bangladesh. Stamford J Microbiol 2012;2:28-30.
- 2 Zhang R, Liu L, Zhou H, Chan EW, Li J, Fang Y, et al. Nationwide surveillance of clinical carbapenem-resistant Enterobacteriaceae (CRE) strains in China. E Bio Med 2017;19:98-106.
- 3 Datta P, Gupta V, Garg S, Chander J. Phenotypic method for differentiation of carbapenemases in Enterobacteriaceae: Study from North India. Indian J Pathol Microbiol 2012;55:357-60.
- 4 Mariappan S, Sekar U, Kamalanathan A. Carbapenemase-producing Enterobacteriaceae: Risk factors for infection and impact of resistance on outcomes. Int J Appl Basic Med Res 2017;7:32-9.
- 5 Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 2011;17:1791-8.
- 6 Remya P, Shanthi M, Sekar U. Prevalence of KPC and its occurrence with other beta-lactamases in Klebsiella pneumoniae. J Lab Physicians 2018;10:387-91.
- 7 Nematzadeh S, Shahcheraghi F, Feizabadi MM, Nikbin VS, Nasehi L. Molecular characterization of CTX-Mβ-lactamases among Klebsiella pneumoniae isolated from patients at Tehran hospitals. Indian J Med Microbiol 2011;29:254-7.
- 8 Collee JG, Miles RS, Matt B. Test for identification of bacteria. In: Collee JG, Fraser AG, Marmion BP, Simmons A, editors. Mackie and McCartney Practical Medical Microbiology. 14th ed., Ch. 7. Edinburgh: Churchill Livingstone; 1996. p. 131-49.
- 9 Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. 25th Informational Supplement Document M100-S25. Wayne: Clinical and Laboratory Standards Institute; 2015.
- 10 Abiramasundari VK, Sekar U, Shanthi M, Arunagiri K. Detection of carbapenemase production in Klebsiella pneumoniae in a tertiary care centre. Int J Pharm Bio Sci 2015;6:847-56.
- 11 Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 2011;70:119-23.
- 12 Gautom RK. Rapid pulsed-field gel electrophoresis protocol for typing of Escherichia coli O157:H7 and other gram-negative organisms in 1 day. J Clin Microbiol 1997;35:2977-80.
- 13 Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: Criteria for bacterial strain typing. J Clin Microbiol 1995;33:2233-9.
- 14 Tseng IL, Liu YM, Wang SJ, Yeh HY, Hsieh CL, Lu HL, et al. Emergence of carbapenemase producing Klebsiella Pneumonia and Spread of KPC-2 and KPC-17 in Taiwan: A nationwide study from 2011 to 2013. PLoS One 2015;10:e0138471.
- 15 Bi W, Liu H, Dunstan RA, Li B, Torres VV, Cao J, et al. Extensively Drug-Resistant Klebsiella pneumoniae causing nosocomial bloodstream Infections in China: Molecular investigation of antibiotic resistance determinants informing therapy and clinical outcomes. Front Microbiol 2017;8:1230.
- 16 Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: The phantom menace. J Antimicrob Chemother 2012;67:1597-606.
- 17 Hosseinzadeh Z, Sedigh Ebrahim-Saraie H, Sarvari J, Mardaneh J, Dehghani B, Rokni-Hosseini SM, et al. Emerge of bla NDM-1 and bla OXA-48-like harboring carbapenem-resistant Klebsiella pneumoniae isolates from hospitalized patients in Southwestern Iran. J Chin Med Assoc 2018;81:536-40.
- 18 Shanthi M, Sekar U, Sowmiya M, Malathi J, Kamalanathan A, Sekar B, et al. Clonal diversity of New Delhi metallobetalactamase-1 producing Enterobacteriaceae in a tertiary care centre. Indian J Med Microbiol 2013;31:237-41.
- 19 Veeraraghavan B, Shankar C, Karunasree S, Kumari S, Ravi R, Ralph R. Carbapenem resistant Klebsiella pneumoniae isolated from bloodstream infection: Indian experience. Pathog Glob Health 2017;111:240-6.
- 20 Sharma A, Bakthavatchalam YD, Gopi R, Anandan S, Verghese VP, Veeraraghavan B. Mechanisms of Carbapenem Resistance in K. pneumoniae and E. coli from Bloodstream Infections in India. J Infect Dis Ther 2016; 4:293.
- 21 Pragasam AK, Sahni RD, Anandan S, Sharma A, Gopi R, Hadibasha N, et al. A pilot study on carbapenemase detection: Do we see the same level of agreement as with the CLSI observations. J Clin Diagn Res 2016;10:DC09-13.
- 22 Lixandru BE, Cotar AI, Straut M, Usein CR, Cristea D, Ciontea S, et al. Carbapenemase-producing Klebsiella pneumoniae in Romania: A six-month survey. PLoS One 2015;10:e0143214.
- 23 Solgi H, Badmasti F, Aminzadeh Z, Giske CG, Pourahmad M, Vaziri F, et al. Molecular characterization of intestinal carriage of carbapenem-resistant Enterobacteriaceae among inpatients at two Iranian university hospitals: first report of co-production of blaNDM-7 and blaOXA-48. Eur J Clin Microbiol Infect Dis 2017;36:2127-35.
- 24 Zujić Atalić V, Bedenić B, Kocsis E, Mazzariol A, Sardelić S, Barišić M, et al. Diversity of carbapenemases in clinical isolates of Enterobacteriaceae in Croatia – The results of a multicentre study. Clin Microbiol Infect 2014;20:O894-903.
- 25 Ben-Hamouda T, Foulon T, Ben-Cheikh-Masmoudi A, Fendri C, Belhadj O, Ben-Mahrez K. Molecular epidemiology of an outbreak of multiresistant Klebsiella pneumoniae in a Tunisian neonatal ward. J Med Microbiol 2003;52:427-33.