CC BY-NC-ND 4.0 · Asian J Neurosurg 2019; 14(01): 318-321
DOI: 10.4103/ajns.AJNS_196_18
Case Report

Coexistent cerebral cavernous malformation and developmental venous anomaly: Does an aggressive natural history always call for surgical intervention?

Kuntal Das
Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Utter Pradesh
,
Kamlesh Rangari
Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Utter Pradesh
,
Suyash Singh
Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Utter Pradesh
,
Kamlesh Bhaisora
Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Utter Pradesh
,
Awadhesh Jaiswal
Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Utter Pradesh
,
Sanjay Behari
Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Utter Pradesh
› Institutsangaben

Coexistence of cerebral cavernous malformations (CMs) and developmental venous anomaly (DVA) represents the most common form of mixed intracranial vascular malformations. Existing literature supports not only a possible causative role of DVA for de novo CMs but also a potentially detrimental effect on an associated CM, increasing the chances of hemorrhagic complications and growth in the latter. A 52-year-old gentleman presented to us with a 17-year long history of simple motor seizures on the left faciobrachial region. On magnetic resonance imaging (MRI) of the head, a 1.5 cm × 1.5 cm CM without any evidence of recent hemorrhage was identified in the left high frontal premotor area. There was a linear enhancement in the adjoining superior frontal sulcus on contrast MRI. On intra-arterial angiogram, this hyperintensity was confirmed to be a venous channel draining into the superior sagittal sinus. Thus, a diagnosis of cavernoma associated with a DVA was made. The patient was advised conservative treatment and he was doing well at follow-up. Unless diligently looked for, DVA associated with CM may be easily missed. The coexistence has pathophysiological and management implications. Despite the reported aggressive natural history, there is a scope for conservative treatment for these complex vascular malformations.

Financial support and sponsorship

Nil.




Publikationsverlauf

Artikel online veröffentlicht:
09. September 2022

© 2019. Asian Congress of Neurological Surgeons. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Awad IA, Robinson JR Jr., Mohanty S, Estes ML. Mixed vascular malformations of the brain: Clinical and pathogenetic considerations. Neurosurgery 1993;33:179-88.
  • 2 McCormick WF. The pathology of vascular (“arteriovenous”) malformations. J Neurosurg 1966;24:807-16.
  • 3 Martin NA, Wilson CB, Stein BM. Venous and cavernous malformations. In: Wilson CB, Stein BM, editors. Intracranial Arteriovenous Malformations. Baltimore: Williams & Wilkins; 1984. p. 234-45.
  • 4 Hirsh LF. Combined cavernous-arteriovenous malformation. Surg Neurol 1981;16:135-9.
  • 5 Lobato RD, Rivas JJ, Gomez PA, Cabrera A, Sarabia R, Lamas E. Comparison of the clinical presentation of symptomatic arteriovenous malformations (angiographically visualized) and occult vascular malformations. Neurosurgery 1992;31:391-6.
  • 6 Maeder P, Gudinchet F, Meuli R, de Tribolet N. Development of a cavernous malformation of the brain. AJNR Am J Neuroradiol 1998;19:1141-3.
  • 7 Perrini P, Lanzino G. The association of venous developmental anomalies and cavernous malformations: Pathophysiological, diagnostic, and surgical considerations. Neurosurg Focus 2006;21:e5.
  • 8 Yamada S, Liwnicz BH, Thompson JR, Colohan AR, Iacono RP, Tran JT. Pericapillary arteriovenous malformations angiographically manifested as cerebral venous malformations. Neurol Res 2001;23:513-21.
  • 9 Abe M, Hagihara N, Tabuchi K, Uchino A, Miyasaka Y. Histologically classified venous angiomas of the brain: A controversy. Neurol Med Chir (Tokyo) 2003;43:1-10.
  • 10 Wilson CB. Cryptic vascular malformations. Clin Neurosurg 1992;38:49-84.
  • 11 Abdulrauf SI, Kaynar MY, Awad IA. A comparison of the clinical profile of cavernous malformations with and without associated venous malformations. Neurosurgery 1999;44:41-6.
  • 12 Wurm G, Schnizer M, Fellner FA. Cerebral cavernous malformations associated with venous anomalies: Surgical considerations. Neurosurgery 2005;57:42-58.
  • 13 Horne MA, Flemming KD, Su IC, Stapf C, Jeon JP, Li D, et al. Clinical course of untreated cerebral cavernous malformations: A meta-analysis of individual patient data. Lancet Neurol 2016;15:166-73.
  • 14 Konan AV, Raymond J, Bourgouin P, Lesage J, Milot G, Roy D. Cerebellar infarct caused by spontaneous thrombosis of a developmental venous anomaly of the posterior fossa. AJNR Am J Neuroradiol 1999;20:256-8.
  • 15 Porter RW, Detwiler PW, Spetzler RF, Lawton MT, Baskin JJ, Derksen PT, et al. Cavernous malformations of the brainstem: Experience with 100 patients. J Neurosurg 1999;90:50-8.