CC BY-NC-ND 4.0 · Asian J Neurosurg 2020; 15(03): 554-559
DOI: 10.4103/ajns.AJNS_196_19
Original Article

Long-term outcome following three-level stand-alone anterior cervical discectomy and fusion: Is plating necessary?

Marios Theologou
1   Second Departments of Neurosurgery, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki
2   Fifth Department of Surgery, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki
,
Theologos Theologou
3   Department of Spine Surgery, Lefkos Stavros the Athens Clinic, Athens
,
Nikolaos Skoulios
1   Second Departments of Neurosurgery, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki
,
Maria Mitka
2   Fifth Department of Surgery, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki
,
Nikolaos Karanikolas
1   Second Departments of Neurosurgery, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki
,
Antriana Theologou
4   School of Medicine, University of Belgrade, Belgrade
,
Eleftheria Georgiou
5   Pediatric Surgery Department, Hippokration General Hospital of Thessaloniki
,
Slavisa Matejic
6   Department of Neurosurgery, School of Medicine, University of Pristina Temporarily Settled in Kosovska Mitrovica, Kosovo
,
Christos Tsonidis
1   Second Departments of Neurosurgery, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki
› Author Affiliations

Background: Anterior cervical discectomy with fusion (ACDF) is a proven method for the treatment of selected patients. The necessity of use of an anterior plate is controversial. The article aims to assess the fusion rates (FRs) and long-term outcomes following three-level ACDF. Materials and Methods: Data were collected from the medical records of patients operated on due to degenerative cervical disease. All patients were treated with three-level ACDF employing polyether ether-ketone cages without anterior plating. Visual analog scale (VAS), neck disability index (NDI), and plain radiographs were used in the clinical and radiological postsurgery assessment. Fusion evaluation was performed according to the <1 mm motion between spinous processes rule. Subsidence was defined as a more than 2 mm decrease in the interbody height. Results: A total of 234 treated levels on 78 patients were assessed. The mean presurgery NDI score was 23.07 ± 4.86, with a mean disability of 46.03% ± 9.64. The mean presurgery VAS score of the neck was 7.58 ± 0.85, while VAS score of the arm was 7.75 ± 1.008. Post surgery, NDI stated no disability, while VAS score of the neck and arm showed no presence of pain. The mean FR was 19.50 ± 21.71 levels per month, with a peak from 3rd to 6th month. Presurgery evaluation showed 12 (15.38%) patients with a high T2 sequence signal. Magnetic resonance imaging screening detected 31 (39.24%) patients with coexisting cervical and lumbar findings. Post surgery, transient dysphagia was reported by 1 patient (1.28%), while subsidence was registered in 15 (6.41%) levels, situated in 12 patients (15.38%), most often at C6-7 (66.6%). Clinical and radiological follow-up extended to 69.47 ± 11.45 months. Conclusion: Multilevel stand-alone ACDF is a safe, cost-effective procedure providing favorable clinical and radiological results with minimal complications. The incidence of subsidence is usually clinically insignificant and can be decreased with a careful surgical technique.

Financial support and sponsorship

Nil.




Publication History

Received: 25 June 2019

Accepted: 08 April 2020

Article published online:
16 August 2022

© 2020. Asian Congress of Neurological Surgeons. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Buttermann GR. Anterior cervical discectomy and fusion outcomes over 10 years: A prospective study. Spine (Phila Pa 1976) 2018;43:207-14.
  • 2 Cheung ZB, Gidumal S, White S, Shin J, Phan K, Osman N, et al. Comparison of anterior cervical discectomy and fusion with a stand-alone interbody cage versus a conventional cage-plate technique: A systematic review and meta-analysis. Global Spine J 2019;9:446-55.
  • 3 Kim SY, Yoon SH, Kim D, Oh CH, Oh S. A prospective study with cage-only or cage-with-plate fixation in anterior cervical discectomy and interbody fusion of one and two levels. J Korean Neurosurg Soc 2017;60:691-700.
  • 4 Smith GW, Robinson RA. The treatment of certain cervical-spine disorders by anterior removal of the intervertebral disc and interbody fusion. J Bone Joint Surg Am 1958;40:607-24.
  • 5 Downie WW, Leatham PA, Rhind VM, Wright V, Branco JA, Anderson JA. Studies with pain rating scales. Ann Rheum Dis 1978;37:378-81.
  • 6 Vernon H, Mior S. The neck disability index: A study of reliability and validity. J Manipulative Physiol Ther 1991;14:409-15.
  • 7 Oshina M, Oshima Y, Tanaka S, Riew KD. Radiological fusion criteria of postoperative anterior cervical discectomy and fusion: A systematic review. Global Spine J 2018;8:739-50.
  • 8 Yang JJ, Yu CH, Chang BS, Yeom JS, Lee JH, Lee CK. Subsidence and nonunion after anterior cervical interbody fusion using a stand-alone polyetheretherketone (PEEK) cage. Clin Orthop Surg 2011;3:16-23.
  • 9 Vanek P, Bradac O, DeLacy P, Saur K, Belsan T, Benes V. Comparison of 3 fusion techniques in the treatment of the degenerative cervical spine disease. Is stand-alone autograft really the 'gold standard?': Prospective study with 2-year follow-up. Spine (Phila Pa 1976). 2012;37:1645-51.
  • 10 Chamay A, Tschantz P. Mechanical influences in bone remodeling. Experimental research on Wolff's law. J Biomech 1972;5:173-80.
  • 11 Chu CW, Kung SS, Tsai TH, Huang TY, Hwang SL. Anterior discectomies and interbody cage fusion without plate fixation for 5-level cervical degenerative disc disease: A 5-year follow-up. Kaohsiung J Med Sci 2011;27:524-7.
  • 12 Hwang SL, Lin CL, Lieu AS, Lee KS, Kuo TH, Hwang YF, et al. Three-level and four-level anterior cervical discectomies and titanium cage–Augmented fusion with and without plate fixation. J Neurosurg Spine. 2004;1:160-7.
  • 13 Bagby GW. Arthrodesis by the distraction-compression method using a stainless steel implant. Orthopedics 1988;11:931-4.
  • 14 Sampath P, Bendebba M, Davis JD, Ducker T. Outcome in patients with cervical radiculopathy. Prospective, multicenter study with independent clinical review. Spine (Phila Pa 1976) 1999;24:591-7.
  • 15 Al-Habib AF, AlAqeel AM, Aldakkan AS, AlBadr FB, Shaik SA. Length of MRI signal may predict outcome in advanced cervical spondylotic myelopathy. Neurosciences (Riyadh) 2015;20:41-7.
  • 16 Chen J, Liu Z, Zhong G, Qian L, Li Z, Chen B, et al. Surgical treatment for cervical spondylotic myelopathy in elderly patients: A retrospective study. Clin Neurol Neurosurg 2015;132:47-51.
  • 17 Karpova A, Arun R, Cadotte DW, et al. Assessment of spinal cord compression by magnetic resonance imaging–can it predict surgical outcomes in degenerative compressive myelopathy? A systematic review. Spine (Phila Pa 1976). 2013;38(16):1409-21
  • 18 Matsumoto M, Toyama Y, Ishikawa M, Chiba K, Suzuki N, Fujimura Y. Increased signal intensity of the spinal cord on magnetic resonance images in cervical compressive myelopathy. Does it predict the outcome of conservative treatment? Spine (Phila Pa 1976) 2000;25:677-82.
  • 19 Nouri A, Tetreault L, Zamorano JJ, Dalzell K, Davis AM, Mikulis D, et al. Role of magnetic resonance imaging in predicting surgical outcome in patients with cervical spondylotic myelopathy. Spine (Phila Pa 1976) 2015;40:171-8.
  • 20 Uchida K, Nakajima H, Sato R, Kokubo Y, Yayama T, Kobayashi S, et al. Multivariate analysis of the neurological outcome of surgery for cervical compressive myelopathy. J Orthop Sci 2005;10:564-73.
  • 21 Yukawa Y, Kato F, Yoshihara H, Yanase M, Ito K. MR T2 image classification in cervical compression myelopathy: Predictor of surgical outcomes. Spine (Phila Pa 1976) 2007;32:1675-8.
  • 22 Dagi TF, Tarkington MA, Leech JJ. Tandem lumbar and cervical spinal stenosis. Natural history, prognostic indices, and results after surgical decompression. J Neurosurg 1987;66:842-9.
  • 23 Epstein NE, Epstein JA, Carras R, Murthy VS, Hyman RA. Coexisting cervical and lumbar spinal stenosis: Diagnosis and management. Neurosurgery 1984;15:489-96.
  • 24 LaBan MM, Green ML. Concurrent (tandem) cervical and lumbar spinal stenosis: A 10-yr review of 54 hospitalized patients. Am J Phys Med Rehabil 2004;83:187-90.
  • 25 Ba Z, Zhao W, Wu D, Shen B, Yu B, Wang Z. Box cages packed with local decompression bone were efficient in anterior cervical discectomy and fusion: Five- to 10-year follow-up. Spine (Phila Pa 1976) 2012;37:E1260-3.
  • 26 Samartzis D, Shen FH, Matthews DK, Yoon ST, Goldberg EJ, An HS. Comparison of allograft to autograft in multilevel anterior cervical discectomy and fusion with rigid plate fixation. Spine J 2003;3:451-9.
  • 27 Hilibrand AS, Carlson GD, Palumbo MA, Jones PK, Bohlman HH. Radiculopathy and myelopathy at segments adjacent to the site of a previous anterior cervical arthrodesis. J Bone Joint Surg Am 1999;81:519-28.
  • 28 Baba H, Furusawa N, Imura S, Kawahara N, Tsuchiya H, Tomita K. Late radiographic findings after anterior cervical fusion for spondylotic myeloradiculopathy. Spine (Phila Pa 1976) 1993;18:2167-73.
  • 29 Bohlman HH, Emery SE, Goodfellow DB, Jones PK. Robinson anterior cervical discectomy and arthrodesis for cervical radiculopathy. Long-term follow-up of one hundred and twenty-two patients. J Bone Joint Surg Am 1993;75:1298-307.
  • 30 Gore DR, Sepic SB. Anterior cervical fusion for degenerated or protruded discs. A review of one hundred forty-six patients. Spine (Phila Pa 1976) 1984;9:667-71.
  • 31 Park JB, Cho YS, Riew KD. Development of adjacent-level ossification in patients with an anterior cervical plate. J Bone Joint Surg Am. 2005;87:558-63.
  • 32 Park JB, Watthanaaphisit T, Riew KD. Timing of development of adjacent-level ossification after anterior cervical arthrodesis with plates. Spine J 2007;7:633-6.
  • 33 Daniels AH, Riew KD, Yoo JU, Ching A, Birchard KR, Kranenburg AJ, et al. Adverse events associated with anterior cervical spine surgery. J Am Acad Orthop Surg 2008;16:729-38.
  • 34 Starmer HM, Riley LH 3rd, Hillel AT, Akst LM, Best SR, Gourin CG. Dysphagia, short-term outcomes, and cost of care after anterior cervical disc surgery. Dysphagia 2014;29:68-77.
  • 35 Barsa P, Suchomel P. Factors affecting sagittal malalignment due to cage subsidence in standalone cage assisted anterior cervical fusion. Eur Spine J 2007;16:1395-400.
  • 36 Bartels RH, Donk R, van Azn RD. Height of cervical foramina after anterior discectomy and implantation of a carbon fiber cage. J Neurosurg 2001;95:40-2.
  • 37 HealthCare (Greek Ministry of Health-National Insurance Program Price per ICD-10). Available from: https://he experience.gr/drgs/ken.php?cp=drg&drg_code=%CE%9C09%CE%A7&srch=proc. [Last accessed on 2019 Apr 21].
  • 38 Observe Net (Greek Ministry of Health- National HealthCare Price Observatory-Surgical Equipment). Available from: http://84.205.248.47/front.php/simple/listing?page=175& orderby=3. [Last accessed on 2019 Apr 21].