RSS-Feed abonnieren
DOI: 10.4103/ajns.AJNS_238_20
A novel technique for mitigation of the ledge effect caused by the use of a large-lumen catheter during neurointervention: Beanstalk method
Navigating a large-caliber catheter into the intracranial artery may generate a “ledge effect,” which disturbs successful neurointervention. Particularly, navigation of a large-lumen aspiration catheter is often required to achieve fast recanalization in acute ischemic stroke cases. Occasionally, the aspirator cannot be passed through the ophthalmic artery origin because of the ledge effect. Here, we report a new technique for mitigation of the ledge effect that involves the use of double micro-guidewires (MGWs). We refer to this technique as the “beanstalk method.” We evaluated the efficacy of our idea using a silicon vascular model. Two 0.014” MGWs are used for navigation of a 0.068” aspirator. After one guidewire is navigated to the distal portion, another MGW is advanced along with the former guidewire, in a spiral fashion, similar to the growth of a beanstalk. The aspirator can then pass with the coaxial double-guidewire, although there is a severe gap in the vessel. We performed an in vitro study to demonstrate the effectiveness of the beanstalk method. The beanstalk method was very useful, even under challenging conditions that did not allow for passage of a conventional coaxial catheter or buddy-wire. The beanstalk method effectively decreases the ledge effect because of the shape of the two wires just ahead of the catheter, which contrasts with the hardness of the spiral wires. In cases involving challenging vasculature, the beanstalk method achieves smoother catheter navigation than the conventional coaxial method or buddy-wire technique.
Financial support and sponsorship
Nil.
Publikationsverlauf
Eingereicht: 18. Mai 2020
Angenommen: 25. Juni 2020
Artikel online veröffentlicht:
16. August 2022
© 2020. Asian Congress of Neurological Surgeons. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
-
References
- 1 Turk AS, Frei D, Fiorella D, Mocco J, Baxter B, Siddiqui A, et al. ADAPT FAST study: A direct aspiration first pass technique for acute stroke thrombectomy. J Neurointerv Surg 2014;6:260-4.
- 2 Goto S, Ohshima T, Ishikawa K, Yamamoto T, Shimato S, Nishizawa T, et al. A stent-retrieving into an aspiration catheter with proximal balloon (ASAP) technique: A technique of mechanical thrombectomy. World Neurosurg 2018;109:e468-75.
- 3 Kizilkilic O. Vertebral artery origin stenting with buddy wire technique in tortuous subclavian artery. Eur J Radiol 2007;61:120-3.
- 4 Muraoka K, Kuwahara K, Okuma Y, Tanabe T, Terada K, Meguro T, et al. Successful mitigation of the ledge effect of the Excelsior XT-27 Flex using a double-wire technique: Technical note. J Neuroendovasc Ther 2014;8:166-71.
- 5 Chapot R, Nordmeyer H, Heddier M, Velasco A, Schooss P, Stauder M, et al. The sheeping technique or how to avoid exchange maneuvers. Neuroradiology 2013;55:989-92.
- 6 Sato M, Ohshima T, Ishikawa K, Goto S, Yamamoto T, Izumi T, et al. A novel technique of safe and versatile microguidewire shaping with neuroendovascular therapy: Modified pigtail method. J Neuroendovasc Ther 2017;11:266-71.
- 7 Ohshima T, Shamim Ul Haq Siddiqi, Miyachi S, Matsuo N, Kawaguchi R, Kato Y, et al. Usefulness of modified pigtail-shaped microguidewire guidance for microcatheter navigation in difficult vasculatures during neuroendovascular interventions. Nagoya J Med Sci 2018;80:551-7.