CC BY-NC-ND 4.0 · Asian J Neurosurg 2019; 14(04): 1207-1213
DOI: 10.4103/ajns.AJNS_95_19
Original Article

Clinico-radiological efficacy of posterior instrumentation, decompression, and transpedicular bone grafting in osteoporotic burst fracture associated with neurological deficit

Gaurav Mehta
0   Bombay Hospital and Medical Research Centre, Mumbai, Maharashtra
,
Ankit Patel
0   Bombay Hospital and Medical Research Centre, Mumbai, Maharashtra
,
Sanyam Jain
0   Bombay Hospital and Medical Research Centre, Mumbai, Maharashtra
,
Zahir Merchant
0   Bombay Hospital and Medical Research Centre, Mumbai, Maharashtra
,
Vishal Kundnani
0   Bombay Hospital and Medical Research Centre, Mumbai, Maharashtra
› Author Affiliations

Objective: The aim of this study is to evaluate clinico-radiological outcomes of posterior surgery (decompression + instrumentation + transpedicular bone graft) in osteoporotic burst fracture associated with neurological deficit [OFND]. Materials and Methods: Forty patients with neurological deficit due to delayed osteoporotic vertebral collapse managed by posterior surgery (decompression + instrumentation + transpedicular bone graft) with minimum 2 years follow-up were included in the study. Approval from the Institutional Review Board was taken. Demographic data (age, sex, mode of injury, and the severity of osteoporosis); clinical parameters (Visual Analog Score [VAS], Oswestry Disability Index [ODI], Frankel grade), radiological parameters (local kyphosis), and surgical variables (blood loss, surgery duration, and intraoperative events) were recorded. Neurological worsening/improvement, complications, and implant failures were noted. Results: Significant improvement was noted in VAS (preoperative 8.20 ± 0.65/postoperative 4.1 ± 0.64) and ODI (preoperative 76.54 ± 6.96/postoperative 30.5 ± 6.56). Complete neurological recovery was noted in 37 patients (Frankel Grade E), three patients remained nonambulatory (Frankel Grade C). Significant improvement was noted in local kyphosis angle (preoperative = 21.80 ± 2.70; postoperative 11.40 ± 1.80), with 10% loss of correction (2.5 ± 0.90) at final follow-up. Symptomatic implant failure was noted in two patients and proximal junctional failure in one patient requiring an extension of fixation. Conclusions: OFND can be managed with a single posterior-only surgery with significant improvement in neurology and functional scores of patients. Aggressive kyphosis correction is often not required and optimal correction of kyphosis is noticed due to prone-positioning alone. Transpedicular grafting is safe and simple alternative to cement augmentation or anterior surgery for collapsed vertebrae.

Financial support and sponsorship

Nil.




Publication History

Article published online:
09 September 2022

© 2019. Asian Congress of Neurological Surgeons. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Keen RW. Burden of osteoporosis and fractures. Curr Osteoporos Rep 2003;1:66-70.
  • 2 Frost HM. Clinical management of the symptomatic osteoporotic patient. Orthop Clin North Am 1981;12:671-81.
  • 3 Nakashima H, Yukawa Y, Ito K, Machino M, Ishiguro N, Kato F, et al. Combined posterior-anterior surgery for osteoporotic delayed vertebral fracture with neurologic deficit. Nagoya J Med Sci 2014;76:307-14.
  • 4 Baba H, Maezawa Y, Kamitani K, Furusawa N, Imura S, Tomita K, et al. Osteoporotic vertebral collapse with late neurological complications. Paraplegia 1995;33:281-9.
  • 5 Korovessis P, Maraziotis T, Piperos G, Spyropoulos P. Spontaneous burst fracture of the thoracolumbar spine in osteoporosis associated with neurological impairment: A report of seven cases and review of the literature. Eur Spine J 1994;3:286-8.
  • 6 Kaneda K, Asano S, Hashimoto T, Satoh S, Fujiya M. The treatment of osteoporotic-posttraumatic vertebral collapse using the Kaneda device and a bioactive ceramic vertebral prosthesis. Spine (Phila Pa 1976) 1992;17:S295-303.
  • 7 Sudo H, Ito M, Abumi K, Kotani Y, Takahata M, Hojo Y, et al. One-stage posterior instrumentation surgery for the treatment of osteoporotic vertebral collapse with neurological deficits. Eur Spine J 2010;19:907-15.
  • 8 Suk SI, Kim JH, Lee SM, Chung ER, Lee JH. Anterior-posterior surgery versus posterior closing wedge osteotomy in posttraumatic kyphosis with neurologic compromised osteoporotic fracture. Spine (Phila Pa 1976) 2003;28:2170-5.
  • 9 Uchida K, Nakajima H, Yayama T, Miyazaki T, Hirai T, Kobayashi S, et al. Vertebroplasty-augmented short-segment posterior fixation of osteoporotic vertebral collapse with neurological deficit in the thoracolumbar spine: Comparisons with posterior surgery without vertebroplasty and anterior surgery. J Neurosurg Spine 2010;13:612-21.
  • 10 Verlaan JJ, Diekerhof CH, Buskens E, van der Tweel I, Verbout AJ, Dhert WJ, et al. Surgical treatment of traumatic fractures of the thoracic and lumbar spine: A systematic review of the literature on techniques, complications, and outcome. Spine (Phila Pa 1976) 2004;29:803-14.
  • 11 Takenaka S, Mukai Y, Hosono N, Fuji T. Major surgical treatment of osteoporotic vertebral fractures in the elderly: A comparison of anterior spinal fusion, anterior-posterior combined surgery and posterior closing wedge osteotomy. Asian Spine J 2014;8:322-30.
  • 12 Halvorson TL, Kelley LA, Thomas KA, Whitecloud TS 3rd, Cook SD. Effects of bone mineral density on pedicle screw fixation. Spine (Phila Pa 1976) 1994;19:2415-20.
  • 13 Hu SS. Internal fixation in the osteoporotic spine. Spine (Phila Pa 1976) 1997;22:43S-48S.
  • 14 Soshi S, Shiba R, Kondo H, Murota K. An experimental study on transpedicular screw fixation in relation to osteoporosis of the lumbar spine. Spine (Phila Pa 1976) 1991;16:1335-41.
  • 15 Choma TJ, Pfeiffer FM, Swope RW, Hirner JP. Pedicle screw design and cement augmentation in osteoporotic vertebrae: Effects of fenestrations and cement viscosity on fixation and extraction. Spine (Phila Pa 1976) 2012;37:E1628-32.
  • 16 Van Herck B, Leirs G, Van Loon J. Transpedicular bone grafting as a supplement to posterior pedicle screw instrumentation in thoracolumbar burst fractures. Acta Orthop Belg 2009;75:815-21.
  • 17 Kim HS, Park SK, Joy H, Ryu JK, Kim SW, Ju CI, et al. Bone cement augmentation of short segment fixation for unstable burst fracture in severe osteoporosis. J Korean Neurosurg Soc 2008;44:8-14.
  • 18 Sasso RC, Cotler HB, Reuben JD. Posterior fixation of thoracic and lumbar spine fractures using DC plates and pedicle screws. Spine (Phila Pa 1976) 1991;16:S134-9.
  • 19 Robertson PA, Wray AC. Natural history of posterior iliac crest bone graft donation for spinal surgery: A prospective analysis of morbidity. Spine (Phila Pa 1976) 2001;26:1473-6.
  • 20 Kim KT, Suk KS, Kim JM, Lee SH. Delayed vertebral collapse with neurological deficits secondary to osteoporosis. Int Orthop 2003;27:65-9.
  • 21 Singh K, Heller JG, Samartzis D, Price JS, An HS, Yoon ST, et al. Open vertebral cement augmentation combined with lumbar decompression for the operative management of thoracolumbar stenosis secondary to osteoporotic burst fractures. J Spinal Disord Tech 2005;18:413-9.
  • 22 Blondel B, Fuentes S, Metellus P, Adetchessi T, Pech-Gourg G, Dufour H, et al. Severe thoracolumbar osteoporotic burst fractures: Treatment combining open kyphoplasty and short-segment fixation. Orthop Traumatol Surg Res 2009;95:359-64.
  • 23 Chen JF, Wu CT, Lee ST. Percutaneous vertebroplasty for the treatment of burst fractures. Case report. J Neurosurg Spine 2004;1:228-31.
  • 24 Katsumi K, Hirano T, Watanabe K, Ohashi M, Yamazaki A, Ito T, et al. Surgical treatment for osteoporotic thoracolumbar vertebral collapse using vertebroplasty with posterior spinal fusion: A prospective multicenter study. Int Orthop 2016;40:2309-15.
  • 25 Liao JC, Fan KF, Keorochana G, Chen WJ, Chen LH. Transpedicular grafting after short-segment pedicle instrumentation for thoracolumbar burst fracture: Calcium sulfate cement versus autogenous iliac bone graft. Spine (Phila Pa 1976) 2010;35:1482-8.
  • 26 Alanay A, Acaroǧlu E, Yazici M, Aksoy C, Surat A. The effect of transpedicular intracorporeal grafting in the treatment of thoracolumbar burst fractures on canal remodeling. Eur Spine J 2001;10:512-6.
  • 27 Knop C, Fabian HF, Bastian L, Blauth M. Late results of thoracolumbar fractures after posterior instrumentation and transpedicular bone grafting. Spine (Phila Pa 1976) 2001;26:88-99.
  • 28 Ma Y, Li X, Dong J. Is it useful to apply transpedicular intracorporeal bone grafting to unstable thoracolumbar fractures? A systematic review. Acta Neurochir (Wien) 2012;154:2205-13.
  • 29 Farrokhi MR, Razmkon A, Maghami Z, Nikoo Z. Inclusion of the fracture level in short segment fixation of thoracolumbar fractures. Eur Spine J 2010;19:1651-6.
  • 30 Wu ZX, Gong FT, Liu L, Ma ZS, Zhang Y, Zhao X, et al. A comparative study on screw loosening in osteoporotic lumbar spine fusion between expandable and conventional pedicle screws. Arch Orthop Trauma Surg 2012;132:471-6.
  • 31 DeWald CJ, Stanley T. Instrumentation-related complications of multilevel fusions for adult spinal deformity patients over age 65: Surgical considerations and treatment options in patients with poor bone quality. Spine (Phila Pa 1976) 2006;31:S144-51.
  • 32 Kashii M, Yamazaki R, Yamashita T, Okuda S, Fujimori T, Nagamoto Y, et al. Surgical treatment for osteoporotic vertebral collapse with neurological deficits: Retrospective comparative study of three procedures – Anterior surgery versus posterior spinal shorting osteotomy versus posterior spinal fusion using vertebroplasty. Eur Spine J 2013;22:1633-42.