CC BY-NC-ND 4.0 · European Journal of General Dentistry 2020; 9(01): 17-22
DOI: 10.4103/ejgd.ejgd_50_19
Original Article

The effect of chlorhexidine application on the microtensile bond strength and durability of a total-etch adhesive

Hila Hajizadeh
Department of Restorative and Cosmetic Dentistry, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
,
Maryam Bojarpour
1   Department of Periodontics, School of Dentistry, Bojnord University of Medical Sciences, Bojnord, Iran
,
Alireza Borouziniat
2   Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
,
Fatemeh Namdar
3   Dental Materials Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
› Author Affiliations

Abstract

Aim: The aim of this study was to evaluate the effect of chlorhexidine (CHX) on resin–dentin microtensile bond strength (μTBS) after 6-month aging and to compare with sodium hypochlorite. Materials and Methods: A total of 40 extracted human third molar teeth were mounted in the acrylic resin. Flat occlusal surfaces of dentin were exposed, and after acid etching, the samples were divided randomly into four groups as follows: (a) Control group: Single Bond adhesive resin was applied. (b) The dentin surfaces were exposed to 2% CHX, and then, Single Bond was applied. (c) Dentin surfaces were treated by 5.25% sodium hypochlorite; after rinsing and drying, Single Bond was applied. (d) At first, 5.25% sodium hypochlorite was applied for 30 s, and then, 2% CHX and Single Bond adhesive were applied. Finally, Filtek P60 composite was bonded on the dentin surface. The samples of each group were divided into two subgroups of 24 h and 6 months. μTBS tests were performed using universal testing machine. Afterward, modes of failures were investigated. The statistical analyses were carried out using ANOVA, t-test, and Dunnett’s test. Results: The mean of μTBS for the 24-h and 6-month groups was 15.19 and 10.99 MPa, respectively. Bond strength of all groups except Group D decreased after 6 months, and this bond strength reduction in Group C was more than other groups. Most failure modes were in adhesive type. Conclusions: The use of CHX did not have better preservation of μTBS when compared to control group. Use of hypochlorite is not recommended.

Financial support and sponsorship

This study was financially supported by the Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.




Publication History

Article published online:
01 November 2021

© 2020. European Journal of General Dentistry. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 de Castro FL, de Andrade MF, Duarte Júnior SL, Vaz LG, Ahid FJ. Effect of 2% chlorhexidine on microtensile bond strength of composite to dentin. J Adhes Dent 2003;5:129-38.
  • 2 Pashley DH, Tay FR, Imazato S. How to increase the durability of resin-dentin bonds. Compend Contin Educ Dent 2011;32:60-4, 66.
  • 3 Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 2006;69:562-73.
  • 4 Pashley DH, Tay FR, Yiu C, Hashimoto M, Breschi L, Carvalho RM, et al. Collagen degradation by host-derived enzymes during aging. J Dent Res 2004;83:216-21.
  • 5 Gendron R, Grenier D, Sorsa T, Mayrand D. Inhibition of the activities of matrix metalloproteinases 2, 8, and 9 by chlorhexidine. Clin Diagn Lab Immunol 1999;6:437-9.
  • 6 Brännström M. The cause of postrestorative sensitivity and its prevention. J Endod 1986;12:475-81.
  • 7 Gultz J, Do L, Boylan R, Kaim J, Scherer W. Antimicrobial activity of cavity disinfectants. Gen Dent 1999;47:187-90.
  • 8 Zhang SC, Kern M. The role of host-derived dentinal matrix metalloproteinases in reducing dentin bonding of resin adhesives. Int J Oral Sci 2009;1:163-76.
  • 9 Tulunoglu O, Ayhan H, Olmez A, Bodur H. The effect of cavity disinfectants on microleakage in dentin bonding systems. J Clin Pediatr Dent 1998;22:299-305.
  • 10 Al Qahtani MQ, Platt JA, Moore BK, Cochran MA. The effect on shear bond strength of rewetting dry dentin with two desensitizers. Oper Dent 2003;28:287-96.
  • 11 Frankenberger R, Krämer N, Oberschachtsiek H, Petschelt A. Dentin bond strength and marginal adaption after naOCl pre-treatment. Oper Dent 2000;25:40-5.
  • 12 Vongphan N, Senawongse P, Somsiri W, Harnirattisai C. Effects of sodium ascorbate on microtensile bond strength of total-etching adhesive system to NaOCl treated dentine. J Dent 2005;33:689-95.
  • 13 Yiu CK, García-Godoy F, Tay FR, Pashley DH, Imazato S, King NM, et al. A nanoleakage perspective on bonding to oxidized dentin. J Dent Res 2002;81:628-32.
  • 14 Nagpal R, Tewari S, Gupta R. Effect of various surface treatments on the microleakage and ultrastructure of resin-tooth interface. Oper Dent 2007;32:16-23.
  • 15 Oliveira DP, Barbizam JV, Trope M, Teixeira FB.In vitro antibacterial efficacy of endodontic irrigants against Enterococcus faecalis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;103:702-6.
  • 16 Singh C, Dua V, Vyas M, Verma S. Evaluation of the antimicrobial and physical properties of an orthodontic photo-activated adhesive modified with an antiplaque agent: An in vitro study. Indian J Dent Res 2013;24:694-700.
  • 17 Graziele Magro M, Kuga MC, Regina Victorino K, Vázquez-Garcia FA, Aranda-Garcia AJ, Faria-Junior NB, et al. Evaluation of the interaction between sodium hypochlorite and several formulations containing chlorhexidine and its effect on the radicular dentin – SEM and push-out bond strength analysis. Microsc Res Tech 2014;77:17-22.
  • 18 Kim J, Uchiyama T, Carrilho M, Agee KA, Mazzoni A, Breschi L, et al. Chlorhexidine binding to mineralized versus demineralized dentin powder. Dent Mater 2010;26:771-8.
  • 19 Hebling J, Pashley DH, Tjäderhane L, Tay FR. Chlorhexidine arrests subclinical degradation of dentin hybrid layers in vivo. J Dent Res 2005;84:741-6.
  • 20 Hiraishi N, Yiu CK, King NM, Tay FR. Effect of 2% chlorhexidine on dentin microtensile bond strengths and nanoleakage of luting cements. J Dent 2009;37:440-8.
  • 21 Al-Musallam TA, Evans CA, Drummond JL, Matasa C, Wu CD. Antimicrobial properties of an orthodontic adhesive combined with cetylpyridinium chloride. Am J Orthod Dentofacial Orthop 2006;129:245-51.
  • 22 Leitune VC, Collares FM, Werner Samuel SM. Influence of chlorhexidine application at longitudinal push-out bond strength of fiber posts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;110:e77-81.
  • 23 De Munck J, Mine A, Van den Steen PE, Van Landuyt KL, Poitevin A, Opdenakker G, et al. Enzymatic degradation of adhesive-dentin interfaces produced by mild self-etch adhesives. Eur J Oral Sci 2010;118:494-501.
  • 24 Cecchin D, de Almeida JF, Gomes BP, Zaia AA, Ferraz CC. Influence of chlorhexidine and ethanol on the bond strength and durability of the adhesion of the fiber posts to root dentin using a total etching adhesive system. J Endod 2011;37:1310-5.
  • 25 Breschi L, Cammelli F, Visintini E, Mazzoni A, Vita F, Carrilho M, et al. Influence of chlorhexidine concentration on the durability of etch-and-rinse dentin bonds: A 12-month in vitro study. J Adhes Dent 2009;11:191-8.
  • 26 Loguercio AD, Stanislawczuk R, Polli LG, Costa JA, Michel MD, Reis A. Influence of chlorhexidine digluconate concentration and application time on resin-dentin bond strength durability. Eur J Oral Sci 2009;117:587-96.
  • 27 Leitune VC, Portella FF, Bohn PV, Collares FM, Samuel SM. Influence of chlorhexidine application on longitudinal adhesive bond strength in deciduous teeth. Braz Oral Res 2011;25:388-92.
  • 28 Stanislawczuk R, Reis A, Loguercio AD. A 2-year in vitro evaluation of a chlorhexidine-containing acid on the durability of resin-dentin interfaces. J Dent 2011;39:40-7.
  • 29 Zhou J, Tan J, Chen L, Li D, Tan Y. The incorporation of chlorhexidine in a two-step self-etching adhesive preserves dentin bond in vitro. J Dent 2009;37:807-12.
  • 30 Pomacóndor-Hernández C, Antunes AN, Hipólito VD, Goes MF. Effect of replacing a component of a self-etch adhesive by chlorhexidine on bonding to dentin. Braz Dent J 2013;24:335-9.
  • 31 Gurgan S, Alpaslan T, Kiremitci A, Cakir FY, Yazici E, Gorucu J. Effect of different adhesive systems and laser treatment on the shear bond strength of bleached enamel. J Dent 2009;37:527-34.
  • 32 Nour El-din AK, Miller BH, Griggs JA, Wakefield C. Immediate bonding to bleached enamel. Oper Dent 2006;31:106-14.
  • 33 Salz U, Bock T. Testing adhesion of direct restoratives to dental hard tissue – A review. J Adhes Dent 2010;12:343-71.
  • 34 Kitasako Y, Burrow MF, Katahira N, Nikaido T, Tagami J. Shear bond strengths of three resin cements to dentine over 3 years in vitro. J Dent 2001;29:139-44.
  • 35 Shafiei F, Memarpour M. Effect of chlorhexidine application on long-term shear bond strength of resin cements to dentin. J Prosthodont Res 2010;54:153-8.