CC BY-NC-ND 4.0 · Ibnosina Journal of Medicine and Biomedical Sciences 2019; 11(04): 181-184
DOI: 10.4103/ijmbs.ijmbs_75_19
Original Article

Macular thickness in healthy Libyan adults measured by optical coherence tomography

Samar Bukhatwa
1   Department of Ophthalmology, Faculty of Medicine, University of Benghazi, Benghazi, Libya
,
Sabah Eldressi
1   Department of Ophthalmology, Faculty of Medicine, University of Benghazi, Benghazi, Libya
,
Naeima Elzlitni
1   Department of Ophthalmology, Faculty of Medicine, University of Benghazi, Benghazi, Libya
› Author Affiliations

Objectives: Management of various macular diseases depends on macular thickness which is measured quantitatively by optical coherence tomography. Studies have reported variations in the macular thickness by race and gender. The aim of this study was to determine the normal macular thickness measurements in healthy eyes of Libyans. Subjects and Methods: This study was conducted at the Ophthalmology Outpatient Department at Alkeish polyclinic in the period between January and December 2018. This study included 243 healthy eyes of 131 Libyan adults of both genders who underwent a complete ophthalmic examination including spectral domain optical coherence tomography to measure the macular thickness at the nine areas corresponding to Early Treatment Diabetes Retinopathy Study map (ETDRS). Results: The mean age of the study population was 48.3 ± 16.6 years (ranged between 21 and 79 years), the thickness in the foveola/center point of macula (CPT) was 192 ± 22.4 μm, the central foveal thickness was 230.3 ± 18.3 μm, and the average thickness was 270.1 ± 9.4 μm. Males were having more thickness than females. Conclusions: Foveola's thickness (CPT) in Libyan adults measured by spectral domain optical coherence tomography is thinner than that of previously published studies. Moreover, the central foveal thickness is less than that of many other studies and males have more thickness than females in all the areas of ETDRS map, which indicates that gender must be taken into consideration while interpreting macular retinal thickness data.

Financial support and sponsorship

Nil.




Publication History

Received: 21 November 2019

Accepted: 03 December 2019

Article published online:
07 July 2022

© 2019. The Libyan Authority of Scientific Research and Technologyand the Libyan Biotechnology Research Center. All rights reserved. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License,permitting copying and reproductionso long as the original work is given appropriate credit. Contents may not be used for commercial purposes, oradapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Song WK, Lee SC, Lee ES, Kim CY, Kim SS. Macular thickness variations with sex, age, and axial length in healthy subjects: A spectral domain-optical coherence tomography study. Invest Ophthalmol Vis Sci 2010;51:3913-8.
  • 2 Nussenblatt RB, Kaufman SC, Palestine AG, Davis MD, Ferris FL 3rd. Macular thickening and visual acuity. Measurement in patients with cystoid macular edema. Ophthalmology 1987;94:1134-9.
  • 3 Massin P, Vicaut E, Haouchine B, Erginay A, Paques M, Gaudric A. Reproducibility of retinal mapping using optical coherence tomography. Arch Ophthalmol 2001;119:1135-42.
  • 4 Paunescu LA, Schuman JS, Price LL, Stark PC, Beaton S, Ishikawa H, et al. Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using StratusOCT. Invest Ophthalmol Vis Sci 2004;45:1716-24.
  • 5 Muscat S, Parks S, Kemp E, Keating D. Repeatability and reproducibility of macular thickness measurements with the Humphrey OCT system. Invest Ophthalmol Vis Sci 2002;43:490-5.
  • 6 Asrani S, Zou S, d'Anna S, Vitale S, Zeimer R. Noninvasive mapping of the normal retinal thickness at the posterior pole. Ophthalmology 1999;106:269-73.
  • 7 Wong AC, Chan CW, Hui SP. Relationship of gender, body mass index, and axial length with central retinal thickness using optical coherence tomography. Eye (Lond) 2005;19:292-7.
  • 8 Kashani AH, Zimmer-Galler IE, Shah SM, Dustin L, Do DV, Eliott D, et al. Retinal thickness analysis by race, gender, and age using Stratus OCT. Am J Ophthalmol 2010;149:496-5020.
  • 9 Alamouti B, Funk J. Retinal thickness decreases with age: An OCT study. Br J Ophthalmol 2003;87:899-901.
  • 10 Grading diabetic retinopathy from stereoscopic color fundus photographs-an extension of the modified Airlie house classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research group. Ophthalmology 1991;98:786-806.
  • 11 Srinivasan VJ, Wojtkowski M, Fujimoto JG, Duker JS.In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography. Opt Lett 2006;31:2308-10.
  • 12 Duan XR, Liang YB, Friedman DS, Sun LP, Wong TY, Tao QS, et al. Normal macular thickness measurements using optical coherence tomography in healthy eyes of adult Chinese persons: The Handan Eye Study. Ophthalmology 2010;117:1585-94.
  • 13 Grover S, Murthy RK, Brar VS, Chalam KV. Normative data for macular thickness by high-definition spectral-domain optical coherence tomography (Spectralis). Am J Ophthalmol 2009;148:266-71.
  • 14 Manassakorn A, Chaidaroon W, Ausayakhun S, Aupapong S, Wattananikorn S. Normative database of retinal nerve fiber layer and macular retinal thickness in a Thai population. Jpn J Ophthalmol 2008;52:450-6.
  • 15 Oshitari T, Hanawa K, Adachi-Usami E. Changes of macular and RNFL thicknesses measured by Stratus OCT in patients with early stage diabetes. Eye (Lond) 2009;23:884-9.
  • 16 Pokharel A, Shrestha GS, Shrestha JB. Macular thickness and macular volume measurements using spectral domain optical coherence tomography in normal Nepalese eyes. Clin Ophthalmol 2016;10:511-9.
  • 17 El-Hifnawy MA, Gomaa AR, Abd El-Hady AM, Elkayal HE. Spectralis optical coherence tomography normal macular thickness in Egyptians. Delta J Ophthalmol 2016;17:143-50. Available from: http://www.djo.eg.net/text.asp?2016/17/3/143/195269. [Last accessed on 2019 Jul 15].
  • 18 Al-Zamil WM, Al-Zwaidi FM, Yassin SA. Macular thickness in healthy Saudi adults. A spectral-domain optical coherence tomography study. Saudi Med J 2017;38:63-9.
  • 19 Adhi M, Aziz S, Muhammad K, Adhi MI. Macular thickness by age and gender in healthy eyes using spectral domain optical coherence tomography. PLoS One 2012;7:e37638.
  • 20 Solé González L, Abreu González R, Alonso Plasencia M, Abreu Reyes P. Normal macular thickness and volume using spectral domain optical coherence tomography in a reference population. Arch Soc Esp Oftalmol 2013;88:352-8.
  • 21 Darwish T, Jalloil K, Sulaiman H. The normal values of optic nerve fiber thickness and macular thickness in adults using optical coherence tomography (OCT). Tishreen Univ J Res Sci Stud 2017;39:103-20. available from: http://journal.tishreen.edu.sy/index.php/hlthscnc/article/view/4138. [Last accessed 2019 Sept 20].
  • 22 Ooto S, Hangai M, Sakamoto A, Tomidokoro A, Araie M, Otani T, et al. Three-dimensional profile of macular retinal thickness in normal Japanese eyes. Invest Ophthalmol Vis Sci 2010;51:465-73.
  • 23 Evans JR, Schwartz SD, McHugh JD, Thamby-Rajah Y, Hodgson SA, Wormald RP, et al. Systemic risk factors for idiopathic macular holes: A case-control study. Eye (Lond) 1998;12(Pt 2):256-9.
  • 24 Risk factors for idiopathic macular holes. The eye disease case-control study group. Am J Ophthalmol 1994;118:754-61.