CC BY-NC-ND 4.0 · Indian J Med Paediatr Oncol 2019; 40(03): 325-335
DOI: 10.4103/ijmpo.ijmpo_204_18
Review Article

Cutaneous Malignant Melanoma and Targeted Therapy Based on the Biomarkers

Jayabal Pandiaraja
Department of General Surgery, Care Hospital, Chennai, Tamil Nadu, India
› Author Affiliations
Financial support and sponsorship Nil.

Abstract

Malignant melanoma is the most aggressive form of cutaneous malignancy. It accounts for more than 75% of cancer-related deaths among cutaneous malignancies. It accounts for <5% of cutaneous malignancy. Numerous biomarkers are used in malignant melanoma with varying clinical applications, including diagnostic purposes, prognosis, therapeutic purpose, and targeted therapy against melanoma. Systemic chemotherapy in malignant melanoma has little benefit compared to immunotherapy and targeted therapy. The observed overall survival with systemic chemotherapy is much less compared with targeted therapy in advanced or metastatic melanoma. Various targeted therapies are currently used in melanoma treatment including BRAF inhibitors such as vemurafenib and dabrafenib; MEK inhibitors such as trametinib; anti-CTLA-4 antibodies such as ipilimumab; and anti-programmed cell death 1 antibodies such as nivolumab, pembrolizumab, and pidilizumab. This study discusses the role of biomarkers and targeted therapies based on the biomarker.



Publication History

Received: 15 September 2018

Accepted: 04 August 2019

Article published online:
03 June 2021

© 2019. Indian Society of Medical and Paediatric Oncology. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Bertolotto C. Melanoma: From melanocyte to genetic alterations and clinical options. Scientifica (Cairo) 2013; 2013: 635203
  • 2 Watts JM, Kishtagari A, Hsu M, Lacouture ME, Postow MA, Park JH. et al. Melanoma and non-melanoma skin cancers in hairy cell leukaemia: A surveillance, epidemiology and end results population analysis and the 30-year experience at memorial Sloan kettering cancer center. Br J Haematol 2015; 171: 84-90
  • 3 Landers TF, Ferng YH, McLoughlin JW, Barrett AE, Larson E. Antibiotic identification, use, and self-medication for respiratory illnesses among urban Latinos. J Am Acad Nurse Pract 2010; 22: 488-95
  • 4 Puig S, Marcoval J, Paradelo C, Azon A, Bartralot R, Bel S. et al. Melanoma incidence increases in the elderly of Catalonia but not in the younger population: Effect of prevention or consequence of immigration?. Acta Derm Venereol 2015; 95: 422-6
  • 5 Garnett E, Townsend J, Steele B, Watson M. Characteristics, rates, and trends of melanoma incidence among Hispanics in the USA. Cancer Causes Control 2016; 27: 647-59
  • 6 Rastrelli M, Alaibac M, Stramare R, Chiarion Sileni V, Montesco MC, Vecchiato A. et al. Melanoma m (zero): Diagnosis and therapy. ISRN Dermatol 2013; 2013: 616170
  • 7 Scolyer RA, Long GV, Thompson JF. Evolving concepts in melanoma classification and their relevance to multidisciplinary melanoma patient care. Mol Oncol 2011; 5: 124-36
  • 8 Vogelsang M, Wilson M, Kirchhoff T. Germline determinants of clinical outcome of cutaneous melanoma. Pigment Cell Melanoma Res 2016; 29: 15-26
  • 9 Ascierto PA, Grimaldi AM, Anderson AC, Bifulco C, Cochran A, Garbe C. et al. Future perspectives in melanoma research: Meeting report from the “Melanoma Bridge”, Napoli, December 5th–8th 2013. J Transl Med 2014; 12: 277
  • 10 Han D, Thomas DC, Zager JS, Pockaj B, White RL, Leong SP. Clinical utilities and biological characteristics of melanoma sentinel lymph nodes. World J Clin Oncol 2016; 7: 174-88
  • 11 Luke JJ, Schwartz GK. Chemotherapy in the management of advanced cutaneous malignant melanoma. Clin Dermatol 2013; 31: 290-7
  • 12 Mayeux R. Biomarkers: Potential uses and limitations. NeuroRx 2004; 1: 182-8
  • 13 Strimbu K, Tavel JA. What are biomarkers?. Curr Opin HIV AIDS 2010; 5: 463-6
  • 14 Watt B, van Niel G, Raposo G, Marks MS. PMEL: A pigment cell-specific model for functional amyloid formation. Pigment Cell Melanoma Res 2013; 26: 300-15
  • 15 Weinstein D, Leininger J, Hamby C, Safai B. Diagnostic and prognostic biomarkers in melanoma. J Clin Aesthet Dermatol 2014; 7: 13-24
  • 16 Ebstein F, Keller M, Paschen A, Walden P, Seeger M, Bürger E. et al. Exposure to melan-A/MART-126-35 tumor epitope specific CD8(+)T cells reveals immune escape by affecting the ubiquitin-proteasome system (UPS). Sci Rep 2016; 6: 25208
  • 17 Choi J, Jee JG. Repositioning of thiourea-containing drugs as tyrosinase inhibitors. Int J Mol Sci 2015; 16: 28534-48
  • 18 Wellbrock C, Arozarena I. Microphthalmia-associated transcription factor in melanoma development and MAP-kinase pathway targeted therapy. Pigment Cell Melanoma Res 2015; 28: 390-406
  • 19 Dadras SS, Lin RJ, Razavi G, Kawakami A, Du J, Feige E. et al. Anovel role for microphthalmia-associated transcription factor-regulated pigment epithelium-derived factor during melanoma progression. Am J Pathol 2015; 185: 252-65
  • 20 Bresnick AR, Weber DJ, Zimmer DB. S100 proteins in cancer. Nat Rev Cancer 2015; 15: 96-109
  • 21 Chen H, Xu C, Jin Q, Liu Z. S100 protein family in human cancer. Am J Cancer Res 2014; 4: 89-115
  • 22 Trefzer U, Chen Y, Herberth G, Hofmann MA, Kiecker F, Guo Y. et al. The monoclonal antibody SM5-1 recognizes a fibronectin variant which is widely expressed in melanoma. BMC Cancer 2006; 6: 8
  • 23 Rolih V, Barutello G, Iussich S, De Maria R, Quaglino E, Buracco P. et al. CSPG4: A prototype oncoantigen for translational immunotherapy studies. J Transl Med 2017; 15: 151
  • 24 Hale CS, Qian M, Ma MW, Scanlon P, Berman RS, Shapiro RL. et al. Mitotic rate in melanoma: Prognostic value of immunostaining and computer-assisted image analysis. Am J Surg Pathol 2013; 37: 882-9
  • 25 Ladstein RG, Bachmann IM, Straume O, Akslen LA. Ki-67 expression is superior to mitotic count and novel proliferation markers PHH3, MCM4 and mitosin as a prognostic factor in thick cutaneous melanoma. BMC Cancer 2010; 10: 140
  • 26 Rapanotti MC, Campione E, Spallone G, Orlandi A, Bernardini S, Bianchi L. Minimal residual disease in melanoma: Circulating melanoma cells and predictive role of MCAM/MUC18/MelCAM/CD146. Cell Death Discov 2017; 3: 17005
  • 27 Gumulec J, Raudenska M, Adam V, Kizek R, Masarik M. Metallothionein-immunohistochemical cancer biomarker: A meta-analysis. PLoS One 2014; 9: e85346
  • 28 Ho J, de Moura MB, Lin Y, Vincent G, Thorne S, Duncan LM. et al. Importance of glycolysis and oxidative phosphorylation in advanced melanoma. Mol Cancer 2012; 11: 76
  • 29 Chaube B, Malvi P, Singh SV, Mohammad N, Meena AS, Bhat MK. Targeting metabolic flexibility by simultaneously inhibiting respiratory complex I and lactate generation retards melanoma progression. Oncotarget 2015; 6: 37281-99
  • 30 Fang S, Wang Y, Sui D, Liu H, Ross MI, Gershenwald JE. et al. C-reactive protein as a marker of melanoma progression. J Clin Oncol 2015; 33: 1389-96
  • 31 Meral R, Duranyildiz D, Tas F, Camlica H, Yasasever V, Kurul S. et al. Prognostic significance of melanoma inhibiting activity levels in malignant melanoma. Melanoma Res 2001; 11: 627-32
  • 32 Rajabi P, Neshat A, Mokhtari M, Rajabi MA, Eftekhari M, Tavakoli P. The role of VEGF in melanoma progression. J Res Med Sci 2012; 17: 534-9
  • 33 Russo A, Caltabiano R, Longo A, Avitabile T, Franco LM, Bonfiglio V. et al. Increased levels of miRNA-146a in serum and histologic samples of patients with uveal melanoma. Front Pharmacol 2016; 7: 424
  • 34 Kumar S, Sharma P, Kumar D, Chakraborty G, Gorain M, Kundu GC. Functional characterization of stromal osteopontin in melanoma progression and metastasis. PLoS One 2013; 8: e69116
  • 35 Kee D, McArthur G. Targeted therapies for cutaneous melanoma. Hematol Oncol Clin North Am 2014; 28: 491-505
  • 36 Evans MS, Madhunapantula SV, Robertson GP, Drabick JJ. Current and future trials of targeted therapies in cutaneous melanoma. Adv Exp Med Biol 2013; 779: 223-55
  • 37 Wong DJ, Ribas A. Targeted therapy for melanoma. Cancer Treat Res 2016; 167: 251-62
  • 38 Grimaldi AM, Simeone E, Festino L, Vanella V, Palla M, Ascierto PA. Novel mechanisms and therapeutic approaches in melanoma: Targeting the MAPK pathway. Discov Med 2015; 19: 455-61
  • 39 Hu-Lieskovan S, Mok S, Homet Moreno B, Tsoi J, Robert L, Goedert L. et al. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF (V600E) melanoma. Sci Transl Med 2015; 7: 279ra41
  • 40 Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J. et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 2012; 367: 1694-703
  • 41 Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J. et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med 2014; 371: 1877-88
  • 42 Sullivan R, LoRusso P, Boerner S, Dummer R. Achievements and challenges of molecular targeted therapy in melanoma. Am Soc Clin Oncol Educ Book 2015; 35: 177-86
  • 43 Johnson DB, Flaherty KT, Weber JS, Infante JR, Kim KB, Kefford RF. et al. Combined BRAF (Dabrafenib) and MEK inhibition (Trametinib) in patients with BRAFV600-mutant melanoma experiencing progression with single-agent BRAF inhibitor. J Clin Oncol 2014; 32: 3697-704
  • 44 Wagle N, Van Allen EM, Treacy DJ, Frederick DT, Cooper ZA, Taylor-Weiner A. et al. MAP kinase pathway alterations in BRAF-mutant melanoma patients with acquired resistance to combined RAF/MEK inhibition. Cancer Discov 2014; 4: 61-8
  • 45 Queirolo P, Picasso V, Spagnolo F. Combined BRAF and MEK inhibition for the treatment of BRAF-mutated metastatic melanoma. Cancer Treat Rev 2015; 41: 519-26
  • 46 Menzies AM, Long GV. Dabrafenib and trametinib, alone and in combination for BRAF-mutant metastatic melanoma. Clin Cancer Res 2014; 20: 2035-43
  • 47 Camacho LH. CTLA-4 blockade with ipilimumab: Biology, safety, efficacy, and future considerations. Cancer Med 2015; 4: 661-72
  • 48 Mahoney KM, Freeman GJ, McDermott DF. The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. Clin Ther 2015; 37: 764-82
  • 49 Tsai KK, Daud AI. The role of anti-PD-1/PD-L1 agents in melanoma: Progress to date. Drugs 2015; 75: 563-75
  • 50 Ott PA, Hodi FS, Robert C. CTLA-4 and PD-1/PD-L1 blockade: New immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin Cancer Res 2013; 19: 5300-9
  • 51 Das R, Verma R, Sznol M, Boddupalli CS, Gettinger SN, Kluger H. et al. Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo. J Immunol 2015; 194: 950-9