CC BY-NC-ND 4.0 · Indian J Med Paediatr Oncol 2017; 38(04): 416-419
DOI: 10.4103/ijmpo.ijmpo_4_15
Original Article

DROSHA rs642321 Polymorphism Influence Susceptibility to Childhood Acute Lymphoblastic Leukemia: A Preliminary Report

Mohammad Hashemi
Cellular and Molecular Research Center; Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
,
Seyed-Shahaboddin Hasani
Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
,
Majid Naderi
Department of Pediatrics, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
› Author Affiliations
Financial support and sponsorship Nil.

Abstract

Introduction: It has been well known that the microRNA biogenesis is involved in the pathogenesis of various diseases. We investigated the possible association between DROSHA rs642321 variant and risk of acute lymphocytic leukemia (ALL). Materials and Methods: We genotyped 75 children diagnosed with ALL and 115 age- and sex-matched children with no history of cancer of any type (as the control group) by the tetra amplification refractory mutation system-polymerase chain reaction. Results: We found that DROSHA rs642321 C > T variant significantly decreased the risk of ALL in codominant (TT vs. CC: odds ratio [OR] = 0.33, 95% confidence interval [CI] = 0.14–0.80, P = 0.020) and dominant (TT + CT vs. CC: OR = 0.51, 95% CI = 0.27–0.94, P = 0.037) inheritance model tested. The rs642321 T allele was associated with protective against ALL (OR = 0.58, 95% CI = 0.38–0.88, P = 0.011) incomparison with C allele. Conclusion: The study findings revealed that DROSHA rs642321 variant decreased the risk of pediatrics ALL in an Iranian population. Larger sample sizes with different ethnicities are needed to validate our findings.



Publication History

Article published online:
04 July 2021

© 2017. Indian Society of Medical and Paediatric Oncology. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used forcommercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/.)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Guo LM, Xi JS, Ma Y, Shao L, Nie CL, Wang GJ, et al. ARID5B gene rs10821936 polymorphism is associated with childhood acute lymphoblastic leukemia: A meta-analysis based on 39,116 subjects. Tumour Biol 2014;35:709-13.
  • 2 Ma Y, Sui Y, Wang L, Li H. Effect of GSTM1 null genotype on risk of childhood acute leukemia: A meta-analysis. Tumour Biol 2014;35:397-402.
  • 3 Ambros V. MicroRNAs: Tiny regulators with great potential. Cell 2001;107:823-6.
  • 4 Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat Rev Genet 2008;9:102-14.
  • 5 Wilczynska A, Bushell M. Thecomplexity of miRNA-mediated repression. Cell Death Differ 2015;22:22-33.
  • 6 Zhang B, Pan X, Cobb GP, Anderson TA. MicroRNAs as oncogenes and tumor suppressors. Dev Biol 2007;302:1-2.
  • 7 Chen CZ. MicroRNAs as oncogenes and tumor suppressors. N Engl J Med 2005;353:1768-71.
  • 8 Ambros V. The functions of animal microRNAs. Nature 2004;431:350-5.
  • 9 Bartel DP, Chen CZ. Micromanagers of gene expression: The potentially widespread influence of metazoan microRNAs. Nat Rev Genet 2004;5:396-400.
  • 10 Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science 2004;303:95-8.
  • 11 Zamore PD, Haley B. Ribo-gnome: The big world of small RNAs. Science 2005;309:1519-24.
  • 12 Yan M, Huang HY, Wang T, Wan Y, Cui SD, Liu ZZ, et al. Dysregulated expression of dicer and drosha in breast cancer. Pathol Oncol Res 2012;18:343-8.
  • 13 Sung H, Jeon S, Lee KM, Han S, Song M, Choi JY, et al. Common genetic polymorphisms of microRNA biogenesis pathway genes and breast cancer survival. BMC Cancer 2012;12:195.
  • 14 Jafarnejad SM, Sjoestroem C, Martinka M, Li G. Expression of the RNase III enzyme DROSHA is reduced during progression of human cutaneous melanoma. Mod Pathol 2013;26:902-10.
  • 15 Merritt WM, Lin YG, Han LY, Kamat AA, Spannuth WA, Schmandt R, et al. Dicer, drosha, and outcomes in patients with ovarian cancer. N Engl J Med 2008;359:2641-50.
  • 16 Zhu DX, Fan L, Lu RN, Fang C, Shen WY, Zou ZJ, et al. Downregulated dicer expression predicts poor prognosis in chronic lymphocytic leukemia. Cancer Sci 2012;103:875-81.
  • 17 Tong N, Xu B, Shi D, Du M, Li X, Sheng X, et al. Hsa-miR-196a2 polymorphism increases the risk of acute lymphoblastic leukemia in Chinese children. Mutat Res 2014;759:16-21.
  • 18 Yuan L, Chu H, Wang M, Gu X, Shi D, Ma L, et al. Genetic variation in DROSHA 3'UTR regulated by hsa-miR-27b is associated with bladder cancer risk. PLoS One 2013;8:e81524.
  • 19 Jiang Y, Chen J, Wu J, Hu Z, Qin Z, Liu X, et al. Evaluation of genetic variants in microRNA biosynthesis genes and risk of breast cancer in chinese women. Int J Cancer 2013;133:2216-24.
  • 20 Sung H, Lee KM, Choi JY, Han S, Lee JY, Li L, et al. Common genetic polymorphisms of microRNA biogenesis pathway genes and risk of breast cancer: A case-control study in Korea. Breast Cancer Res Treat 2011;130:939-51.
  • 21 Weng Y, Chen Y, Chen J, Liu Y, Bao T. Common genetic variants in the microRNA biogenesis pathway are associated with malignant peripheral nerve sheath tumor risk in a Chinese population. Cancer Epidemiol 2013;37:913-6.
  • 22 Horikawa Y, Wood CG, Yang H, Zhao H, Ye Y, Gu J, et al. Single nucleotide polymorphisms of microRNA machinery genes modify the risk of renal cell carcinoma. Clin Cancer Res 2008;14:7956-62.
  • 23 Hashemi M, Sheybani-Nasab M, Naderi M, Roodbari F, Taheri M. Association of functional polymorphism at the miR-502-binding site in the 3' untranslated region of the SETD8 gene with risk of childhood acute lymphoblastic leukemia, a preliminary report. Tumour Biol 2014;35:10375-9.
  • 24 Hasani SS, Hashemi M, Eskandari-Nasab E, Naderi M, Omrani M, Sheybani-Nasab M, et al. Afunctional polymorphism in the miR-146a gene is associated with the risk of childhood acute lymphoblastic leukemia: A preliminary report. Tumour Biol 2014;35:219-25.
  • 25 Hashemi M, Moazeni-Roodi AK, Fazaeli A, Sandoughi M, Bardestani GR, Kordi-Tamandani DM, et al. Lack of association between paraoxonase-1 Q192R polymorphism and rheumatoid arthritis in Southeast Iran. Genet Mol Res 2010;9:333-9.
  • 26 Hashemi M, Fazaeli A, Ghavami S, Eskandari-Nasab E, Arbabi F, Mashhadi MA, et al. Functional polymorphisms of FAS and FASL gene and risk of breast cancer – Pilot study of 134 cases. PLoS One 2013;8:e53075.
  • 27 Hashemi M, Eskandari-Nasab E, Zakeri Z, Atabaki M, Bahari G, Jahantigh M, et al. Association of pre-miRNA-146a rs2910164 and premiRNA-499 rs3746444 polymorphisms and susceptibility to rheumatoid arthritis. Mol Med Rep 2013;7:287-91.
  • 28 Hashemi M, Eskandari-Nasab E, Moazeni-Roodi A, Naderi M, Sharifi-Mood B, Taheri M, et al. Association of CTSZ rs34069356 and MC3R rs6127698 gene polymorphisms with pulmonary tuberculosis. Int J Tuberc Lung Dis 2013;17:1224-8.
  • 29 Hashemi M, Moazeni-Roodi A, Bahari A, Taheri M. A tetra-primer amplification refractory mutation system-polymerase chain reaction for the detection of rs8099917 IL28B genotype. Nucleosides Nucleotides Nucleic Acids 2012;31:55-60.
  • 30 Kan CW, Howell VM, Hahn MA, Marsh DJ. Genomic alterations as mediators of miRNA dysregulation in ovarian cancer. Genes Chromosomes Cancer 2015;54:1-9.
  • 31 Gutierrez-Camino A, Lopez-Lopez E, Martin-Guerrero I, Piñan MA, Garcia-Miguel P, Sanchez-Toledo J, et al. Noncoding RNA-related polymorphisms in pediatric acute lymphoblastic leukemia susceptibility. Pediatr Res 2014;75:767-73.
  • 32 Mueller GA, Miller MT, DeRose EF, Ghosh M, London RE, Hall TM, et al. Solution structure of the drosha double-stranded RNA-binding domain. Silence 2010;1:2.
  • 33 Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III drosha initiates microRNA processing. Nature 2003;425:415-9.
  • 34 Lin J, Horikawa Y, Tamboli P, Clague J, Wood CG, Wu X, et al. Genetic variations in microRNA-related genes are associated with survival and recurrence in patients with renal cell carcinoma. Carcinogenesis 2010;31:1805-12.
  • 35 Sand M, Gambichler T, Skrygan M, Sand D, Scola N, Altmeyer P, et al. Expression levels of the microRNA processing enzymes Drosha and dicer in epithelial skin cancer. Cancer Invest 2010;28:649-53.
  • 36 Muralidhar B, Goldstein LD, Ng G, Winder DM, Palmer RD, Gooding EL, et al. Global microRNA profiles in cervical squamous cell carcinoma depend on Drosha expression levels. J Pathol 2007;212:368-77.
  • 37 Avery-Kiejda KA, Braye SG, Forbes JF, Scott RJ. The expression of dicer and Drosha in matched normal tissues, tumours and lymph node metastases in triple negative breast cancer. BMC Cancer 2014;14:253.
  • 38 Lønvik K, Sørbye SW, Nilsen MN, Paulssen RH. Prognostic value of the microRNA regulators Dicer and Drosha in non-small-cell lung cancer: Co-expression of drosha and miR-126 predicts poor survival. BMC Clin Pathol 2014;14:45.
  • 39 Lin RJ, Lin YC, Chen J, Kuo HH, Chen YY, Diccianni MB, et al. MicroRNA signature and expression of Dicer and Drosha can predict prognosis and delineate risk groups in neuroblastoma. Cancer Res 2010;70:7841-50.