Open Access
CC BY-NC-ND 4.0 · South Asian J Cancer 2018; 07(03): 175-182
DOI: 10.4103/sajc.sajc_19_18
ORIGINAL ARTICLE: Gastro-intestinal & Hepatobiliary Cancer

Robotic radiosurgery treatment in liver tumors: Early experience from an Indian center

Authors

  • Debnarayan Dutta

    Department of Radiation Oncology, Amrita Institute of Medical Science, Kochi, Kerala
  • Sathiya Krishnamoorthy

    Department of Radiation Oncology, Global Hospital, Chennai, Tamil Nadu
  • H. Sudahar

    Department of Medical Physics, Apollo Speciality Hospital, Chennai, Tamil Nadu
  • M. Muthukumaran

    Department of Medical Physics, Apollo Speciality Hospital, Chennai, Tamil Nadu
  • T. Ramkumar

    Department of Surgical Gastroenterology, Apollo Speciality Hospital, Chennai, Tamil Nadu
  • Jayraj Govindraj

    Department of Radiology, Apollo Speciality Hospital, Chennai, Tamil Nadu

Source of Support: Nill.

Abstract

Purpose: The purpose of this study is to report CyberKnife experience in hepatocellular carcinoma (HCC) and liver metastasis (LM). Materials and Methods: Fifty liver lesions in 31 consecutive patients with liver lesion [mean age 54.5 years (range 32-81 years), 77% were male patient, GTV <10cc in 5 patients, 11-90cc in 18 & >90cc in 8 patients respectively. Eighty percentage (25/31) had prior treatment (chemotherapy 18 patient & TACE in 7 patients). Dosage schedule was 21-45Gy/3# (mean PTV dose 33Gy, Prescription isodose 84%, target coverage 94%). Mean CI, nCI & HI were 1.19, 1.31 & 1.18 respectively. Mean liver dose was 5.4 Gy, 800 cc liver dose 11.1 Gy; Results: At mean follow-up of 12.5 months (range 1.9–44.6 months), 19 patients were expired and 12 were alive (nine patient with stable disease, two local progression, and one with metastasis). Median overall survival (OS) of all patients are 9 months (1.9–44.6 months), in HCC patients 10.5 months (2.1–44.6 months) and MT 6.5 months (1.9–24.6 months) respectively. Gr-I-II GI toxicities were in 11/50 (22%) patients. OS was influenced by PS (Karnofsky Performance Status 70–80 vs. 90–100: 9.9 vs. 16.4; P = 0.024), Child-Pugh (CP A/B vs. C: 23.6 vs. 6.5; P = 0.069), cirrhosis (only fatty liver vs. diffuse cirrhosis: 17.8 vs. 10.6; P = 0.003), prior treatment (no Rx vs. prior Rx: 30.1 vs. 8.2; P = 0.08), number of lesions (single vs. multiple: 16.4 vs. 6.9; P = 0.001), and target volume (<10 cc vs. >90 cc: 24.6 vs. 11.2; P = 0.03). Conclusion: Stereotactic body radiation therapy is a safe and effective treatment. Patient related factors such as performance status, Child-Pugh classification, cirrhosis status, prior treatment, number of liver lesion & target volume (GTV) influence the survival functions.



Publication History

Article published online:
22 December 2020

© 2018. MedIntel Services Pvt Ltd. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/.)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Ursino S, Greco C, Cartei F, Colosimo C, Stefanelli A, Cacopardo B, et al. Radiotherapy and hepatocellular carcinoma: Update and review of the literature. Eur Rev Med Pharmacol Sci 2012;16:1599-604.
  • 2 Andolino DL, Johnson CS, Maluccio M, Kwo P, Tector AJ, Zook J, et al. Stereotactic body radiotherapy for primary hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 2011;81:e447-53.
  • 3 Honda Y, Kimura T, Aikata H, Kobayashi T, Fukuhara T, Masaki K, et al. Stereotactic body radiation therapy combined with transcatheter arterial chemoembolization for small hepatocellular carcinoma. J Gastroenterol Hepatol 2013;28:530-6.
  • 4 Kang JK, Kim MS, Cho CK, Yang KM, Yoo HJ, Kim JH, et al. Stereotactic body radiation therapy for inoperable hepatocellular carcinoma as a local salvage treatment after incomplete transarterial chemoembolization. Cancer 2012;118:5424-31.
  • 5 Scorsetti M, Arcangeli S, Tozzi A, Comito T, Alongi F, Navarria P, et al. Is stereotactic body radiation therapy an attractive option for unresectable liver metastases? A preliminary report from a phase 2 trial. Int J Radiat Oncol Biol Phys 2013;86:336-42.
  • 6 O'Connor JK, Trotter J, Davis GL, Dempster J, Klintmalm GB, Goldstein RM, et al. Long-term outcomes of stereotactic body radiation therapy in the treatment of hepatocellular cancer as a bridge to transplantation. Liver Transpl 2012;18:949-54.
  • 7 Lanciano R, Lamond J, Yang J, Feng J, Arrigo S, Good M, et al. Stereotactic body radiation therapy for patients with heavily pretreated liver metastases and liver tumors. Front Oncol 2012;2:23.
  • 8 Rimassa L, Santoro A. Sorafenib therapy in advanced hepatocellular carcinoma: The SHARP trial. Expert Rev Anticancer Ther 2009;9:739-45.
  • 9 Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, et al. Efficacy and safety of sorafenib in patients in the Asia-pacific region with advanced hepatocellular carcinoma: A phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 2009;10:25-34.
  • 10 Lee JK, Abou-Alfa GK. An update on clinical trials in the treatment of advanced hepatocellular carcinoma. J Clin Gastroenterol 2013;47Suppl:S16-9.
  • 11 Eriguchi T, Takeda A, Sanuki N, Oku Y, Aoki Y, Shigematsu N, et al. Acceptable toxicity after stereotactic body radiation therapy for liver tumors adjacent to the central biliary system. Int J Radiat Oncol Biol Phys 2013;85:1006-11.
  • 12 Berber B, Ibarra R, Snyder L, Yao M, Fabien J, Milano MT, et al. Multicentre results of stereotactic body radiotherapy for secondary liver tumours. HPB (Oxford) 2013;15:851-7.
  • 13 Ibarra RA, Rojas D, Snyder L, Yao M, Fabien J, Milano M, et al. Multicenter results of stereotactic body radiotherapy (SBRT) for non-resectable primary liver tumors. Acta Oncol 2012;51:575-83.
  • 14 Facciuto ME, Singh MK, Rochon C, Sharma J, Gimenez C, Katta U, et al. Stereotactic body radiation therapy in hepatocellular carcinoma and cirrhosis: Evaluation of radiological and pathological response. J Surg Oncol 2012;105:692-8.
  • 15 Goyal K, Einstein D, Yao M, Kunos C, Barton F, Singh D, et al. Cyberknife stereotactic body radiation therapy for nonresectable tumors of the liver: Preliminary results. HPB Surg 2010;2010. pii: 309780.
  • 16 Seo YS, Kim MS, Yoo SY, Cho CK, Choi CW, Kim JH, et al. Preliminary result of stereotactic body radiotherapy as a local salvage treatment for inoperable hepatocellular carcinoma. J Surg Oncol 2010;102:209-14.
  • 17 Kwon JH, Bae SH, Kim JY, Choi BO, Jang HS, Jang JW, et al. Long-term effect of stereotactic body radiation therapy for primary hepatocellular carcinoma ineligible for local ablation therapy or surgical resection. Stereotactic radiotherapy for liver cancer. BMC Cancer 2010;10:475.
  • 18 Huang WY, Jen YM, Lee MS, Chang LP, Chen CM, Ko KH, et al. Stereotactic body radiation therapy in recurrent hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 2012;84:355-61.
  • 19 Miszczyk L, Tukiendorf A, Jochymek B. Linac based radical radioablation of liver tumors. Technol Cancer Res Treat 2013;12:225-32.
  • 20 Kim JH, Hong SS, Kim JH, Park HJ, Chang YW, Chang AR, et al. Safety and efficacy of ultrasound-guided fiducial marker implantation for cyberKnife radiation therapy. Korean J Radiol 2012;13:307-13.
  • 21 Velec M, Moseley JL, Craig T, Dawson LA, Brock KK. Accumulated dose in liver stereotactic body radiotherapy: Positioning, breathing, and deformation effects. Int J Radiat Oncol Biol Phys 2012;83:1132-40.
  • 22 Price TR, Perkins SM, Sandrasegaran K, Henderson MA, Maluccio MA, Zook JE, et al. Evaluation of response after stereotactic body radiotherapy for hepatocellular carcinoma. Cancer 2012;118:3191-8.
  • 23 Kress MS, Collins BT, Collins SP, Dritschilo A, Gagnon G, Unger K, et al. Stereotactic body radiation therapy for liver metastases from colorectal cancer: Analysis of safety, feasibility, and early outcomes. Front Oncol 2012;2:8.
  • 24 Dewas S, Bibault JE, Mirabel X, Fumagalli I, Kramar A, Jarraya H, et al. Prognostic factors affecting local control of hepatic tumors treated by stereotactic body radiation therapy. Radiat Oncol 2012;7:166.
  • 25 Dewas S, Mirabel X, Kramar A, Jarraya H, Lacornerie T, Dewas-Vautravers C, et al. Stereotactic body radiation therapy for liver primary and metastases: The lille experience. Cancer Radiother 2012;16:58-69.
  • 26 Kress MA, Collins BT, Collins SP, Dritschilo A, Gagnon G, Unger K, et al. Scoring system predictive of survival for patients undergoing stereotactic body radiation therapy for liver tumors. Radiat Oncol 2012;7:148.
  • 27 Culleton S, Jiang H, Haddad CR, Kim J, Brierley J, Brade A, et al. Outcomes following definitive stereotactic body radiotherapy for patients with child-pugh B or C hepatocellular carcinoma. Radiother Oncol 2014;111:412-7.
  • 28 Huertas A, Baumann AS, Saunier-Kubs F, Salleron J, Oldrini G, Croisé-Laurent V, et al. Stereotactic body radiation therapy as an ablative treatment for inoperable hepatocellular carcinoma. Radiother Oncol 2015;115:211-6.
  • 29 Yamashita H, Onishi H, Murakami N, Matsumoto Y, Matsuo Y, Nomiya T, et al. Survival outcomes after stereotactic body radiotherapy for 79 Japanese patients with hepatocellular carcinoma. J Radiat Res 2015;56:561-7.